Advertisement

Genetica

, Volume 98, Issue 3, pp 235–247 | Cite as

Identification of new medium reiteration frequency repeats in the genomes of Primates, Rodentia and Lagomorpha

  • Jerzy Jurka
  • Vladimir V. Kapitonov
  • Paul Klonowski
  • Jolanta Walichiewicz
  • Arian F. A. Smit
Article

Abstract

We report eleven new families of MEdium Reiteration frequency (MER) interspersed repeats in the genomes of Primates, Rodentia, and Lagomorpha. Two families of the human repeats, MER46 and MER47, represent non-autonomous DNA transposons. These sequences are flanked by TA target site duplications and have terminal inverted repeats (TIRs) similar to TIRs of DNA transposons. The sequences of five other families of repeats, MER41, MER48, MER50, MER51, and RMER3, resemble long terminal repeats of retroviruses. A potential involvement of some of the reported MER repeats in the regulation of transcription and genetic rearrangements is suggested. Age estimations place the origin of most MER repeats at the time of decline in MIR (Mammalian-wide Interspersed Repeats) retroposition and before the origin of the Alu family.

Key words

DNA transposons genome interspersed repeats LTR retroviruses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altshul, S.F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman, 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.Google Scholar
  2. Arnold, G.J., B. Kahnt, K. Herrenknecht & H.J. Gross, 1987. A variant gene and a pseudogene for human 5S RNA are transcriptionally active in vitro. Gene 60: 137–144.Google Scholar
  3. Auffray, C., J.W. Lillie, A.J. Korman, J.M. Boss, N. Frechin, F. Guillemot, J. Cooper, R.C. Mulligan & J.L. Strominger, 1987. Structure and expression of HLA-DQ alpha and-DX alpha genes: interallelic alternate splicing of the HLA-DQ alpha gene and functional splicing of the HLA-DQ alpha gene using a retroviral vector. Immunogenetics 26: 63–73.Google Scholar
  4. Batzer, M.A., M. Stoneking, M. Alegria Hartman, H. Bazan, D.H. Kass, T.H. Shaikh, G.E. Novick, P.A. Ioannou, W.D. Scheer & R.J. Herrera, 1994. African origin of human-specific polymorphic Alu insertions. Proc. Natl. Acad. Sci. U.S.A. 91: 12288–12292.Google Scholar
  5. Berg, D.E. & M.M. Howe (eds.), 1989. Mobile DNA, edited by American Society for Microbiology, Washington, DC.Google Scholar
  6. Bird, A.R., 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8: 1499–1504.Google Scholar
  7. Britten, R.J., 1994. Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc. Natl. Acad. Sci. USA 91: 6148–6150.Google Scholar
  8. Colloms, S.D., H.G.A.M.van Luenen & R.H.A. Plasterk, 1994. DNA binding activities of the Caenorhabditis elegans Tc3 transposase. Nucl. Acids Res. 22: 5548–5554.Google Scholar
  9. Deininger, P.L. & G.R. Daniels. The recent evolution of mammalian repetitive DNA elements. Trends Genet. 2: 76–80.Google Scholar
  10. Faulkner, D.V. & J. Jurka, 1988. Multiple aligned sequence editor (MASE). Trends Biochem. Sci. 13: 321–322.Google Scholar
  11. Fitch, D.H.A., W. Bailey, D.A. Tagle, M. Goodman, L. Sieu & J.L. Slightom, 1991. Duplication of the globin gene mediated by L1 long intrespersed repetitive elements in an carly ancestor of simian primates. Proc. Natl. Acad. Sci. USA 88: 7396–7400.Google Scholar
  12. Goodman, M., D.A. Tagle, D.H.A. Fitch, W. Bailey, J. Czelusniak, B.F. Koop, P. Benson & J.L. Slightom, 1990. Primate evolution at the DNA level and a classification of Hominoids. J. Mol. Evol. 30: 260–266.Google Scholar
  13. Hake, L.E. & N.B. Hecht, 1993. Utilization of an alternative transcription initiation site of somatic cytochrome c in the mouse produces a testis-specific cytochrome c mRNA. J. Biol. Chem. 268: 4788–4797.Google Scholar
  14. Jurka, J. & A.F.A. Smit, 1995. A reference collection of human repeats. In Repbase, NCBI Data Repository.Google Scholar
  15. Jurka, J., 1990. Novel families of interspersed repetitive elements from the human genome. Nucleic Acids Res. 18: 137–141.Google Scholar
  16. Jurka, J., 1994. Approaches to identification and analysis of interspersed repetitive DNA sequences, pp. 294–298 in Automated DNA sequencing and analysis, edited by M.D. Adams, C. Fields and J.C. Venter. Academic Press Inc., San Diego, CA.Google Scholar
  17. Jurka, J., D.J. Kaplan, C.H. Duncan, J. Walichiewicz, A. Milosavljevie, G. Murali & J.F. Solus, 1993. Identification and characterization of new human medium reiteration frequency repeats. Nucleic Acids Res. 21: 1273–1279.Google Scholar
  18. Jurka, J., E. Zietkiewiez & D. Labuda, 1995. Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era. Nucleic Acids Res. 23: 170–175.Google Scholar
  19. Jurka, J., P. Walichiewicz & A. Milosavljevic, 1992. Prototypic sequences for human repetitive DNA. J. Mol. Evol. 35: 286–291.Google Scholar
  20. Jurka, J., P. Klonowski, V. Dagman & P. Pelton, 1996. CENSOR—A program for identification and elimination of repetitive elements from DNA sequences. Computers Chem. 20: 119–121.Google Scholar
  21. Kapitonov, V. & J. Jurka, 1996. The age of Alu subfamilies. J. Mol. Evol. 42: 59–65.Google Scholar
  22. Kaplan, D.J., J. Jurka, J.F. Solus & C.H. Duncan, 1991. Medium reiteration frequency repetitive sequences in the human genome. Nucleic Acids Res. 19: 4731–4738.Google Scholar
  23. Kawakami, K., H. Okamoto, Y. Yagawa & K. Nagano, 1990. Regulation of Na+,K(+)-ATPase. II. Cloning and analysis of the 5′-flanking region of the rat NKAB2 gene encoding the beta 2 subunit. Gene 91: 271–274.Google Scholar
  24. Labuda, D. & G. Striker, 1989. Sequence conservation in Alu evolution. Nucl. Acids. Res. 17: 2477–2491.Google Scholar
  25. Lania, L., A.Di Cristofano, M. Strazzulio, G. Pengue, B. Majello & G.La Mantia, 1992. Structural and functional organization of the human endogenous retroviral ERV9 sequences. Virology 191: 464–468.Google Scholar
  26. Lee, R.N., J.C. Jaskula, R.A.van den Bussche, R.J. Baker & H.A. Wichman, 1996. Retrotransposon Mys was active during evolution of the Peromyscus leucopus-maniculatus complex. J. Mol. Evol. 42: 44–51.Google Scholar
  27. Mager, D.L. & J.D. Freeman, 1987. Human endogenous retrovirus-like genome with type C pol sequences and gag sequences related to human T-cell lymphotrople viruses. J. Virology 61: 4060–4066.Google Scholar
  28. Maraia, R. (ed.), 1995. Molecular Biology Intelligence Unit: The Impact of Short Interspersed Elements (SINEs) on the Host Genome, edited by R.G. Landes Company, Texas.Google Scholar
  29. Morgan, G.T., 1995. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254: 1–5.Google Scholar
  30. Onda, M., S. Kudo, A. Rearden, M.-G. Mattei & M. Fukuda, 1993. Identification of a precursor genomic segment that provided a sequence unique to gylcophorin B and E genes. Proc. Natl. Acad. Sci. USA 90: 7220–7224.Google Scholar
  31. Oosumi, T., W.R. Belknap & B. Garlick, 1995. Mariner transpo sons in humans. Nature 378: 672.Google Scholar
  32. Robertson, H.M., 1993. The mariner transposable element is widespread in insects. Nature 362: 241–245.Google Scholar
  33. Smit, A.F.A. & A.D. Riggs, 1995. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23: 98–102.Google Scholar
  34. Smit, A.F.A. & D.A. Riggs, 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.Google Scholar
  35. Smit, A.F.A., 1993. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21: 1863–1872.Google Scholar
  36. Smit, A.F.A., G. Toth, A.D. Riggs & J. Jurka, 1995. Aneestral, mammalian-wide subfamililes of LINE-1 repetitive sequences. J. Mol. Biol. 246: 401–417.Google Scholar
  37. Takasaki, N., S. Murata, M. Saitoh, T. Kobayashi, L. Park & N. Okada, 1994. Species-specific amplification of tRNA-derived short interspersed repetitive elements (SINEs) by retroposition: a process of parasitization of entire genomes during the evolution of salmonids. Proc. Natl. Acad. Sci. USA 91: 10153–10157.Google Scholar
  38. Usdin, K., P. Chevret, F.M. Catzeflis, R. Verona & A.V. Furano, 1995. L1 (LINE-1) retrotransposable elements provide a “fossil” record of the phylogenetic history of murid rodents. Mol. Biol. Evol. 12: 73–82.Google Scholar
  39. Varmus, H.E., 1982. Form and function of retroviral proviruses. Science 216: 812–820.Google Scholar
  40. Vos, J.C. & R.H.A. Plasterk, 1994. Tel transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J. 13: 6125–6132.Google Scholar
  41. Wilson, A.C., V.M. Sarich & L.R. Maxson, 1974. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. Natl. Acad. Sci. USA 71: 3028–3030.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jerzy Jurka
    • 1
  • Vladimir V. Kapitonov
    • 1
  • Paul Klonowski
    • 1
  • Jolanta Walichiewicz
    • 1
  • Arian F. A. Smit
    • 2
  1. 1.Genetic Information Research InstitutePalo AltoUSA
  2. 2.Department of BiotechnologyUniversity of WashingtonSeattleUSA

Personalised recommendations