, Volume 73, Issue 1–2, pp 37–52 | Cite as

Chromosome phylogenies of man, great apes, and old world monkeys

  • Jean De Grouchy


The karyotypes of man and of the closely related Pongidae — chimpanzee, gorilla, and orangutan — differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular.

The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements — inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin — and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985).

A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution, in human chromosomal diseases, and after ionizing irradiation do not seem to be distributed at random.

Chromosomal rearrangements observed in evolution are known to be harmful in humans, leading to complete or partial sterility through abnormal offspring in the heterozygous state but not in the homozygous state. They then become a robust reproductive barrier capable of creating new species, far more powerful than gene mutations advocated by neo-Darwinism. The homozygous state may be achieved especially through inbreeding, which must have played a major role during primate evolution. Whether new species derive from unique individuals or couples (Adam and Eve), or through a “populational” process, remains a matter for discussion.


Chromosome Rearrangement World Monkey Reciprocal Translocation Homozygous State Pericentric Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrle, M., Friedler, W., Rett, A., Ambros, P. & Schweizer, D., 1979. A case of trisomy 22 in Pongo pygmaeus. Cytogenet. cell Genet. 24: 1–6.Google Scholar
  2. Bender, M. A. & Chu, E. H. Y., 1963. The chromosomes of primates. In: Buettner-Janusch, J. (ed.). Evolutionary and Genetic Biology of Primates, Vol. 1. Academic Press, New York, pp. 261–310.Google Scholar
  3. Betz, A., Turleau, C. & De Grouchy, J., 1974. Hétérozygotie et homozygotie pour une inversion péricentrique du 3 humain. Annls. Génét. 17: 79–80.Google Scholar
  4. Bobrow, M. & Madan, K., 1973. A comparison of chimpanzee and human chromosomes using the Giemsa-11 and other chromosome banding techniques. Cytogenet. cell Genet. 12: 107–116.Google Scholar
  5. Chiarelli, A. B., ed., 1971. Comparative Genetics in Monkeys, Apes and Man. Academic Press, London, 346 pp.Google Scholar
  6. Couturier, J., Dutrillaux, B., Turleau, C. & De Grouchy, J., 1982. Comparaisons chromosomiques chez quatre espèces ou sous espèces de gibbons. Annls. Génét. 5: 5–10.Google Scholar
  7. De Grouchy, J., Turleau, C., Roubin, M. & Klein, M., 1972. Evolutions caryotypiques de l'homme et du chimpanzé. Etude comparative des topographies de bandes après dénaturation ménagée. Annls. Génét. 15: 79–84.Google Scholar
  8. De Grouchy, J., Turleau, C., Roubin, M. & Chavin-Colin, F., 1973. Chromosomal evolution of man and the primates (Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Nobel Symp. 23: 124–131.Google Scholar
  9. De Grouchy, J., 1974. L'évolution des chromosomes. La Recherche 5: 325–336.Google Scholar
  10. De Grouchy, J., 1978. De la Naissance des Espèces aux Aberrations de la Vie. Robert Laffont, Paris, 211 pp.Google Scholar
  11. De Grouchy, J., Finaz, C. & Nguyen van Cong, 1977. Comparative banding and gene mapping in the Primates. Evolution of chromosome 1 during fifty-million-years. In: de La Chapelle, A. & Sorsa, M. (eds.). International Chromosome Conference, 6th, Helsinki, Finland, 1977. (Chromosomes Today, vol. 6). Amsterdam, Elsevier North-Holland, Biomed. Press, pp. 183–190.Google Scholar
  12. De Grouchy, J., Turleau, C. & Finaz, C., 1978. Chromosomal phylogeny of the primates. A. Rev. Genet. 12: 289–328.Google Scholar
  13. De Grouchy, J. & Turleau, C., 1984. Clinical Atlas of Human Chromosomes, 2nd ed. Wiley Medical, New York, 481 pp.Google Scholar
  14. De Vries, G. F., De France, H. F. & Schevers, J. A. M., 1975. Identical Giemsa banding patterns of two Macaca species: Macaca mulatta and M. fascicularis. A densitometric study. Cytogenet. cell Genet. 14: 26–33.Google Scholar
  15. Dutrillaux, B., Rethoré, M.-O., Prieur, M. & Lejeune, J., 1973. Analyse de la structure fine des chromoomes du Gorille (Gorilla gorilla). Comparaison avec Homo sapiens et Pan troglodytes. Humangenetik 20: 343–354.Google Scholar
  16. Dutrillaux, B., 1975. Sur la nature et l'origine des chromosomes humains. Monographies des Annales de Génétique. Expansion Scientifique, 102 pp.Google Scholar
  17. Dutrillaux, B., Rethoré, M.-O., Aurias, A. & Goustard, M., 1975a. Analyse du caryotype de deux espèces de Gibbons (Hylobates lar et H. concolor) par différentes techniques de marquage. Cytogenet. cell Genet. 15: 81–91.Google Scholar
  18. Dutrillaux, B., Rethoré, M.-O. & Lejeune, J., 1975b. Analyse du caryotype de Pan paniscus. Comparaison avec les autres Pongidae et l'Homme. Humangenetik 28: 113–119.Google Scholar
  19. Dutrillaux, B., Viegas-Péquignot, E., Dubos, C. & Masse, R., 1978a. Complete or almost complete analogy of chromosome banding between the baboon (Papio papio) and man. Hum. Genet. 43: 37–46.Google Scholar
  20. Dutrillaux, B., Viegas-Péquignot, E., Couturier, J. & Chauvier, G., 1978b. Identity of euchromatic bands from man to Cercopithecidae. Hum. Genet. 45: 283–296.Google Scholar
  21. Dutrillaux, B., 1979a. Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (prosimian) to man. Hum. Genet. 48: 251–314.Google Scholar
  22. Dutrillaux, B., Biémont, M. C., Viegas-Péquignot, E. & Laurent, C., 1979. Comparison of the karyotypes of four Cercopithecoidae: Papio papio, P. anubis, Macaca mulatta and M. fascicularis. Cytogenet. cell Genet. 23: 77–83.Google Scholar
  23. Dutrillaux, B., 1979b. Very large analogy of chromosome banding between Cebus capucinus (Platyrrhini) and man. Cytogenet. cell Genet. 24: 84–94.Google Scholar
  24. Dutrillaux, B., Couturier, J. & Fosse, A.-M., 1980. The use of high resolution banding in comparative cytogenetics: comparison between man and Lagothrix lagotricha (Cebidae). Cytogenet. cell Genet. 27: 45–51.Google Scholar
  25. Dutrillaux, B. & Couturier, J., 1981a. Phylogénie chromosomique chez les primates: les Hominidae sont issus par évolution populationnelle de Pongidae ancestraux. In: Les Processus de l'Hominisation, Coll. Int. CNRS No. 599, 16–20 juin 1980, pp. 319–324.Google Scholar
  26. Dutrillaux, B. & Couturier, J., 1981b. La Pratique de l'Analyse Chromosomique. Masson Ed. Paris, 86 pp.Google Scholar
  27. Dutrillaux, B. & Couturier, J., 1981c. The ancestral karyotype of platyrrhine monkeys. Cytogenet. cell Genet. 30: 232–242.Google Scholar
  28. Dutrillaux, B., Couturier, J., Muleris, M., Lombard, M. & Chauvier, G., 1982. Chromosomal phylogeny of forty-two species or subspecies of cercopithecoids (Primates Catarrhini). Annls Génét. 25: 96–109.Google Scholar
  29. Dutrillaux, B., Webb, G., Muleris, M., Couturier, J. & Butler, R., 1984a. Chromosome study of Presbytis cristatus: presence of a complex Y-autosome rearrangement in the male. Annls Génét. 27: 148–153.Google Scholar
  30. Dutrillaux, B., Muleris, M. & Paravatou-Petsota, M., 1984b. Diagrammatic representation for chromosomal mutagenesis studies. I. Karyotypes most similar to those of man. Mutat. Res. 126: 81–92.Google Scholar
  31. Dutrillaux, B., Couturier, J., Muleris, M., Rumpler, Y. & Viegas-Péquignot, E., 1986. Relations chromosomiques entre sousordres et infra-ordres, et schéma évolutif général des primates. Mammalia (in press).Google Scholar
  32. Egozcue, J., Caballin, R. & Goday, C., 1973. Banding patterns of the chromosomes of man and the chimpanzee. Humangenetik 18: 77–80.Google Scholar
  33. Finaz, C., Turleau, C., De Grouchy, J., Nguyen van Cong, Rebourcet, R. & Frézal, J., 1973. Comparison of man and chimpanzee syntenic groups by cell hybridization. Preliminary report. Biomedicine 19: 526–531.Google Scholar
  34. Finaz, C., Cochet, C., De Grouchy, J., Nguyen van Cong, Rebourcet, R. & Frézal, J., 1975. Localisations géniques chez le chimpanzé (Pan troglodytes). Comparaison avec la carte factorielle de l'homme (Homo sapiens). Annls Génét. 18: 169–177.Google Scholar
  35. Finaz, C., Dubois, M. F., Cochet, C., Vignal, M. & De Grouchy, J., 1976. Le caryotype du cercopithèque (Cercopithecus aethipos). Marquage et nomenclature. Annls Génét. 19: 213–216.Google Scholar
  36. Finaz, C., Nguyen van Cong, Cochet, C., Frézal, J. & De Grouchy, J., 1977. Fifty-million-year evolution of chromosome 1 in the primates. Evidence from banding and gene mapping. Cytogenet. cell Genet. 18: 160–164.Google Scholar
  37. Finaz, C., Cochet, C. & De Grouchy, J., 1978. Identité des caryotypes de Papio papio et Macaca mulatta en bandes R, G, C et Ag-NOR. Annls Génét. 21: 149–151.Google Scholar
  38. Human Gene Mapping 8, 1985. Cytogenet. cell Genet. 40: 1–823.Google Scholar
  39. Lalley, P., 1987. Comparative gene mapping in nonhuman primates: identification of chromosome homologies with man. (Abstract.) Genetica, this issue.Google Scholar
  40. Lejeune, J., Turpin, R. & Gautier, M., 1959. Le mongolisme, premier exemple d'aberration autosomique humaine. Annls Génét. 1: 41–49.Google Scholar
  41. Lejeune, J., 1968. Adam et Eve ou le monogénisme. Nouv. Rev. Théo. 90: 191–197.Google Scholar
  42. Lejeune, J., Dutrillaux, B., Rethoré, M.-O. & Prieur, M., 1973. Comparaison de la structure fine des chromatides d'Homo sapiens et de Pan troglodytes. Chromosoma 43: 423–444.Google Scholar
  43. McClure, H. M., Belden, K. H., Pieper, W. A. & Jacobson, C. B., 1969. Autosomal trisomy in a chimpanzee: resemblance to Down's syndrome. Science 165: 1010–1012.Google Scholar
  44. Marks, J., 1982. Evolutionary tempo and phylogenetic inference based on primate karyotypes. Cytogenet. cell Genet. 34: 261–264.Google Scholar
  45. Miller, D. A., Firschein, I. L., Dev., V. G., Tantravahi, R. & Miller, O. J., 1974. The gorilla karyotype: chromosome lengths and polymorphisms. Cytogenet. cell Genet. 13: 536–550.Google Scholar
  46. Miller, D. A., 1977. Evolution of primate chromosomes. Man's closest relative may be the gorilla, not the chimpanzee. Science 198: 1116–1124.Google Scholar
  47. Muleris, M., Couturier, J. & Dutrillaux, B., 1981. Le caryotype de Cercopithecus (mona) campbelli campbelli. Comparaison avec les autres cercopithèques et l'homme. annls Génét. 24: 137–140.Google Scholar
  48. Muleris, M., 1982. Contribution à l'étude de l'évolution chromosomique chez les Cercopithécoidés. Doctoral Thesis Paris VII.Google Scholar
  49. Muleris, M., Paravatou-Petsota, M. & Dutrillaux, B., 1984. Diagrammatic representation for chromosomal mutagenesis studies. II. Radiation-induced rearrangements in Macaca fascicularis. Mutat. Res. 126: 93–103.Google Scholar
  50. Paravatou-Petsota, M., Muleris, M., Prieur, M. & Dutrillaux, B., 1985. Diagrammatic representation for chromosomal mutagenesis studies. III. Radiation-induced rearrangments in Pan troglodytes (chimpanzee). Mutat. Res. 149: 57–66.Google Scholar
  51. Pearson, P. L., Bobrow, M., Vosa, C. G. & Barlow, P. W., 1971. Quinacrine fluorescence in mammalian chromosomes. Nature 231: 326–329.Google Scholar
  52. Ruffié, J., Colombiès, P., Ginoux-Mounié, C. & Carles-Trochain, E., 1970. Etude cytogénétique de 4 espèces de primates. Comparaison avec la caryotype humain. Annls Génét. 13: 3–10.Google Scholar
  53. Rumpler, Y. & Dutrillaux, B., 1976. Chromosomal evolution in Malagasy Lemurs, I. Chromosome banding studies in the genuses Lemur and Microcebus. Cytogenet. cell Genet. 17: 268–281.Google Scholar
  54. Rumpler, Y. & Dutrillaux, B., 1978. Chromosomal evolution in Malagasy lemurs. III. Chromosome banding studies in the genus Hapalemur and the species Lemur catta. Cytogenet. cell Genet. 21: 201–211.Google Scholar
  55. Rumpler, Y., Couturier, J., Warter, S. & Dutrillaux, B., 1983. Chromosomal evolution in Malagasy lemurs. VII. Phylogenic relationships between Propithecus, Avahi (Indridae), Microcebus (Cheirogaleidae), and Lemur (Lemuridae). Cytogenet. cell Genet. 36: 542–546.Google Scholar
  56. Rumpler, Y., Ishak, B., Warter, S. & Dutrillaux, B., 1985. Chromosomal evolution in Malagasy lemurs. VIII. Chromosome banding studies of Lepilemur ruficcandatus, L. leucopus, and L. septentrionalis. Cytogenet. cell Genet. 39: 194–199.Google Scholar
  57. Schweizer, D., Ambros, P., Andrle, M., Rett, A. & Fiedler, W., 1979. Demonstration of specific heterochromatic segments in the orangutan (Pongo pygmacus) by a dystamycin/DAPI double staining technique. Cytogenet. cell Genet. 24: 7–14.Google Scholar
  58. Seuanez, H. N., 1979. The Phytogeny of Human Chromosomes. Springer-Verlag, Berlin, 189 pp.Google Scholar
  59. Seuanez, H. N., Evans, H. J., Martin, D. E. & Fletcher, J., 1979. An inversion of chromosome 2 that distinguishes between Bornean and Sumatran orangutans. Cytogenet. cell Genet. 23: 137–140.Google Scholar
  60. Soulié, J. & De Grouchy, J., 1981. A cytogenetic survey of 110 baboons (Papio cynocephalus). Am. J. phys. Anthrop. 56: 107–113.Google Scholar
  61. Tjio, J. H. & Levan, A., 1956. The chromosome number of man. Hereditas 42: 1–6.Google Scholar
  62. Trantravahi, R., Dev, V. G., Firschein, I. L., Miller, D. A. & Miller, O. J., 1975. Karyotype of the gibbons Hylobates lar and H. moloch. Inversion in chromosome 7. Cytogenet. cell Genet. 15: 92–102.Google Scholar
  63. Turleau, C., De Grouchy, J. & Klein, M., 1972. Phylogénie chromosomique de l'homme et des primates hominiens (Pan troglodytes, Gorilla gorilla et Pongo pygmaeus). Essai de reconstitution du caryotype de l'ancêtre commun. Annls Génét. 15: 225–240.Google Scholar
  64. Turleau, C. & De Grouchy, J., 1973a. Caryotype de l'homme et du chimpanzé. Comparaison de la topographie des bandes, Mécanismes évolutifs possibles. C. r. Acad. Sci. Paris, Ser. D., 274: 2355–2357.Google Scholar
  65. Turleau, C. & De Grouchy, J., 1973b. New observations on the human and chimpanzee karyotypes. Identification of breakage points of pericentric inversions. Humangenetik 20: 151–157.Google Scholar
  66. Turleau, C., De Grouchy, J., Chavin-Colin, F., Mortelmans, J. & Van den Bergh, W., 1975. Inversion péricentrique du 3, homozygote et hétérozygote, et translation centromérique du 12 dans une famille d'orang-outangs. Implications évolutives. Annls Génét. 18: 227–233.Google Scholar
  67. Turleau, C., Créau-Goldberg, N., Cochet, C. & De Grouchy, J., 1983. Gene mapping of the gibbon. Its position in primate evolution. Hum. Genet. 64: 65–72.Google Scholar
  68. Viegas-Péquignot, E., Couturier, J. & Dutrillaux, B., 1978. Comparison of DNA-replication chronology in chromosomes of chimpanzee and man. Primates 19: 209–213.Google Scholar
  69. Warburton, D., Firschein, I. L., Miller, D. A. & Warburton, F. E., 1973. Karyotype of the chimpanzee, Pan troglodytes, based on measurements and banding pattern: comparison to the human karyotype. Cytogenet. cell Genet. 12: 453–461.Google Scholar
  70. Yunis, J. J. & Prakash, O., 1982. The origin of man: a chromosomal pictorial legacy. Science 215: 1525–1530.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • Jean De Grouchy
    • 1
  1. 1.U.173 INSERMHôpital Necker-Enfants-MaladesParix Cedex 15France

Personalised recommendations