, Volume 7, Issue 1, pp 1–40 | Cite as

Microbial degradation of pentachlorophenol

  • Kelly A. McAllister
  • Hung Lee
  • Jack T. Trevors
Review Paper


Pentachlorophenol (PCP) was the most prevalent wood preservative for many years worldwide. Its widespread use had led to contamination of various environments. Traditional methods of PCP clean-up include storage in land-fill sites, incineration and abiotic degradation processes such as photodecomposition. Some aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions. Axenic bacterial cultures, Flavobacterium sp., Rhodococcus sp., Arthrobacter sp., Pseudomonas sp., Sphingomonas sp., and Mycobacterium sp., and fungal cultures, Phanerochaete sp. and Trametes sp. exhibit varying rates and extent of PCP degradation. This paper provides some general information on properties of PCP and reviews the influence of nutrient amendment, temperature and pH on PCP degradation by various aerobic and anaerobic microorganisms. Where information is available, proposed degradation pathways, intermediates and enzymes are reviewed.

Key words

bacteria degradation fungi pentachlorophenol soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, K & Klick, S (1991) Degradation of halogenated phenols in anoxic natural marine sediments. Mar. Pollut. Bull. 22: 227–233Google Scholar
  2. Alleman, BC, Logan, BE & Gilbertson, RL (1992) Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Appl. Environ. Microbiol. 58: 4048–4050Google Scholar
  3. Alleman, BC, Logan, BE & Gilbertson, RL (1993) A rapid method to screen fungi for resistance to toxic chemicals. Biodegradation 4: 125–129Google Scholar
  4. Apajalahti, JHA, Krpnoja, P & Salkinoja-Salonen, MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenolmineralizing actinomycete. Int. J. System. Bacteriol. 36: 246–251Google Scholar
  5. Apajalahti, JHA & Salkinoja-Salonen, MS (1984) Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microb. Ecol. 10: 359–367Google Scholar
  6. Apajalahti, JHA & Salkinoja-Salonen, MS (1986) Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Microbiol. Biotechnol. 25: 62–67Google Scholar
  7. Apajalahti, JHA & Salkinoja-Salonen, MS (1987) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169: 675–681Google Scholar
  8. Bellin, CA & O'Connor, GA (1990) Plant uptake of pentachlorophenol from sludge-amended soils. J. Environ. Qual. 19: 598–602Google Scholar
  9. Bellin, CA, O'Connor, GA & Jin, Y (1990) Sorption and degradation of pentachlorophenol in sludge-amended soils. J. Environ. Qual. 19: 603–608Google Scholar
  10. Briglia, M, Eggen, RI, VanElsas, JD & deVos, WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus strain PCP-1 to the genus Mycobacterium. Int. J. Syst. Bacteriol. 44: 494–498Google Scholar
  11. Briglia, M, Middeldorp, PJM & Salkinoja-Salonen, MS (1994) Mineralization performance of Rhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating on site conditions. Soil. Biol. Biochem. 26: 377–385Google Scholar
  12. Briglia, M, Nurmiaho-Lassila, E-L, Vallini, G & Salkinoja-Salonen, MS (1990) The survival of the pentachlorophenol-degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil. Biodegradation 1: 273–281Google Scholar
  13. Brown, EJ, Pignatello, JJ, Martinson, MM & Crawford, RL (1986) Pentachlorophenol degradation: a pure bacterial culture and epilithic microbial consortium. Appl. Environ. Microbiol. 52: 92–97Google Scholar
  14. Bryant, FO, Hale, DD & Rogers, JE (1991) Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries. Appl. Environ. Microbiol. 57: 2293–2301Google Scholar
  15. Bryant, SE & Schultz, TW (1994) Toxicological assessment of biotransformation products of pentachlorophenol: Tetrahymena population growth impairment. Arch. Environ. Contam. Toxicol. 26: 299–303Google Scholar
  16. Cassidy MB, Leung K, Lee H & Trevors JT (1995) Survival of laclux-marked Pseudomonas aeruginosa UG2Lr cells encapsulated in k-carrageenan and alginate. J. Microbiol. Meth. (in press)Google Scholar
  17. Casterline, JL, Barnett, NM & Ku, Y (1985) Uptake, translocation, and transformation of pentachlorophenol in soybean and spinach plants. Environ. Res. 37: 101–118Google Scholar
  18. Chu, JP & Kirsch, EJ (1972) Metabolism of pentachlorophenol by axenic bacterial culture. Appl. Environ. Microbiol. 23: 1033–1035Google Scholar
  19. Crawford, RL & Mohn, WW (1985) Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol. 7: 617–620Google Scholar
  20. Crosby, DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl. Chem. 53: 1051–1080Google Scholar
  21. Deweerd, KA, Mandelco, L, Tanner, RS, Woese, CR & Suflita, JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novelanaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30Google Scholar
  22. Dietrich, G & Winter, J (1990) Anaerobic degradation of chlorophenol by an enrichment culture. Appl. Microbiol. Biotechnol. 34: 253–258Google Scholar
  23. Edgehill, RU (1994) Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790. Appl. Microbiol. Biotechnol. 41: 142–148Google Scholar
  24. Edgehill, RU & Finn, RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl. Environ. Microbiol. 45: 1122–1125Google Scholar
  25. Erickson, BD & Mondello, FJ (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl. Environ. Microbiol. 59: 3858–3862Google Scholar
  26. Frank, R, Braun, HE, Stonefield, KI, Rasper, J & Luyken, H (1990) Organochlorine and organophosphorus residues in the fat of domestic farm animals species, Ontario, Canada 1986–1988. Food Addit. Contam. 7: 629–636Google Scholar
  27. Gilbert, FI, Minn, CE, Duncan, RC & Wilkinson, J (1990) Effects of pentachlorophenol and other chemical preservatives on the health of wood-treating workers in Hawaii. Arch. Environ. Contam. Toxicol. 19: 603–609Google Scholar
  28. Gonzalez, JF & Hu, W-S (1991) Effect of glutamate on the degradation of pentachlorophenol by Flavobacterium sp. Appl. Microbiol. Biotechnol. 35: 100–104Google Scholar
  29. Guthrie, MA, Kirsch, EJ, Wukasch, RF & Grady, CPL (1984) Pentachlorophenol biodegradation II-Anaerobic. Water Res. 18: 451–461Google Scholar
  30. Häggblom, MM, Apajalahti, JHA & Salkinoja-Salonen, MS (1988a) Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl. Environ. Microbiol. 54: 683–688Google Scholar
  31. Häggblom, MM, Apajalahti, JHA & Salkinoja-Salonen, MS (1988b) O-methylation of chlorinated para-hydroquinones by Rhodococcus chlorophenolicus. Appl. Environ. Microbiol. 54: 1818–1824Google Scholar
  32. Häggblom, MM, Nohynek, LJ & Salkinoja-Salonen, MS (1988c) Degradation and O-methylation of chlorinated phenolic compounds by Rhocococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54: 3043–3052Google Scholar
  33. Häggblom, MM, Janke, D & Salinoja-Salonen, MS (1989) Hydroxylation and dechlorination of tetrachlorohydroquinone by Rhodococcus sp. strain CP-2 cell extracts. Appl. Environ. Microbiol. 55: 516–519Google Scholar
  34. Häggblom, MM & Young, LY (1990) Chlorophenol degradation coupled to sulfate reduction. Appl. Environ. Microbiol. 56: 3255–3260Google Scholar
  35. Hendriksen, HV & Ahring, BK (1993) Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactors using different inocula. Biodegradation 3: 399–408Google Scholar
  36. Hendriksen, HV, Larsen, S & Ahring, BK (1992) Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge. Appl. Environ. Microbiol. 58: 365–370Google Scholar
  37. Higson, FK (1991) Degradation of xenobiotics by white-rot fungi. In: Ware, GW & FAGunther (Eds) Reviews of Environmental Contamination and Toxicology (pp. 111–152) Springer-Verlag, New YorkGoogle Scholar
  38. Hu, ZC, Korus, RA, Levinson, WE & Crawford, RL (1994) Adsorption and biodegradation of pentachlorophenol by polyurethaneimmobilized Flavobacterium. Environ. Sci. Technol. 28: 491–496Google Scholar
  39. Izaki, K, Takahashi, M, Sato, Y, Sasagawa, Y, Sato, K & Furusaka, C (1981) Some properties of pentachlorophenol-resistant gramnegative bacteria. Agric. Biol. Chem. 45: 765–767Google Scholar
  40. Jacobsen, BN, Nyholm, N, Pedersen, BM, Poulsen, O & [SS];stfeldt, P (1991) Microbial degradation of pentachlorophenol and lindane in laboratory-scale activated sludge reactors. Water Sci. Technol. 23: 349–356Google Scholar
  41. Jacobsen BN, Nyholm N, Pedersen BM, Poulsen O & [SS];stfeldt P (1993) Removal of organic micropollutants in laboratory activated sludge reactors under various operating conditions: sorption. Water Res. 1505–1510Google Scholar
  42. Järvinen, KT, Melin, ES & Puhakka, JA (1994) High-rate bioremediation of chlorophenol-contaminated groundwater at low temperatures. Environ. Sci. Technol. 28: 2387–2392Google Scholar
  43. Järvinen, KT & Puhakka, JA (1994) Bioremediation of chlorophenol contaminated ground water. Environ. Technol. 15: 823–832Google Scholar
  44. Jekat, FW, Meisel, ML, Eckard, R & Winterhoff, H (1994) Effects of pentachlorophenol (PCP) on the pituitary and thyroidal hormone regulation in the rat. Toxicol. Lett. 71: 9–25Google Scholar
  45. Johri, S, Qazi, GN & Chopra, CL (1991) Evidence of plasmid mediated dechlorinase activity in Pseudomonas sp. J. Biotechnol. 20: 73–82Google Scholar
  46. Kitunen, VH, Valo, RJ & Salkinoja-Salonen, MS (1987) Contamination of soil around wood-preserving facilities by polychlorinated aromatic compounds. Environ. Sci. Technol. 21: 101Google Scholar
  47. Klecka, GM & Maier, WJ (1985) Kinetics of microbial growth on pentachlorophenol. Appl. Environ. Microbiol. 49: 46–53Google Scholar
  48. Kohring, G-W, Zhang, X & Wiegel, J (1989) Anaerobic dechlorination of 2,4-dichlorophenol in fresh water sediments in the presence of sulfate. Appl. Environ. Microbiol. 55: 2735–2737Google Scholar
  49. Krumme, ML & Boyd, SA (1988) Reductive dechlorination of chlorinated phenols in anaerobic upflow bioreactors. Water Res. 22: 171–177Google Scholar
  50. Kuwatsuka, S & Igarashi, M (1975) Degradation of PCP in soils. Soil Sci. Plant Nutr. 21: 405–414Google Scholar
  51. Lamar, RT & Dietrich, DM (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl. Environ. Microbiol. 56: 3093–3100Google Scholar
  52. Lamar, RT & Dietrich, DM (1992) Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood. J. Ind. Microbiol. 9: 181–191Google Scholar
  53. Lamar, RT & Evans, JW (1993) Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ. Sci. Technol. 27: 2566–2571Google Scholar
  54. Lamar, RT, Glaser, JA & Kirk, TK (1990a) Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot Basidiomycete Phanerochaete chrysosporium: mineralization, volatilization, and depletion of PCP. Soil Biol. Biochem. 22: 433–440Google Scholar
  55. Lamar, RT, Larsen, MJ & Kirk, TK (1990b) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl. Environ. Microbiol. 56: 3519–3526Google Scholar
  56. Larsen, S, Hendriksen, HV & Ahring, BK (1991) Potential for thermophilic (50C) anaerobic dechlorination of pentachlorophenol in different ecosystems. Appl. Environ. Microbiol. 57: 2085–2090Google Scholar
  57. Larsson, P & Lemkemeier, K (1989) Microbial mineralization of chlorinated phenols and biphenyls in sediment-water systems from humic and clear-water lakes. Water Res. 23: 1081–1085Google Scholar
  58. Lin, JE, Wang, HY & Hickey, RF (1990) Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol. Bioeng. 35: 1125–1134Google Scholar
  59. Lin, JE, Wang, HY & Hickey, RF (1991) Use of co-immobilized biological systems to degrade toxic organic compounds. Biotechnol. Bioeng. 38: 273–279Google Scholar
  60. Liu, D (1989) Biodegradation of pentachlorophenol and its commercial formulation. Tox. Assess. 4: 115–127Google Scholar
  61. Liu, D, Maguire, RJ, Pacepavicius, G & Dutka, BJ (1991) Biodegradation of recalcitrant chlorophenols by cometabolism. Environ. Toxicol. Water Qual. 6: 85–95Google Scholar
  62. Madsen, T & Aamand, J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57: 2453–2458Google Scholar
  63. McBain, A, Cui, F, Herbert, L & Ruddick, JNR (1995) The microbial degradation of chlorophenolic preservatives in spent, pressuretreated timber. Biodegradation 6: 47–55Google Scholar
  64. Michel, FC, Dass, SB, Grulke, EA & Reddy, CA (1991) Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl. Environ. Microbiol. 57: 2368–2375Google Scholar
  65. Middeldorp, PJM, Briglia, M & Salkinoja-Salonen, MS (1990) Biodegradation of pentachlorophenol in natural soil by inoculated Rhodococcus chlorophenolicus. Microb. Ecol. 20: 123–139Google Scholar
  66. Mikesell, MD & Boyd, SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865Google Scholar
  67. Mikesell, MD & Boyd, SA (1988) Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge. Environ. Sci. Technol. 22: 1411–1414Google Scholar
  68. Mileski, GJ, Bumpus, JA, Jurek, MA & Aust, SD (1988) Biodegrdadation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54: 2885–2889Google Scholar
  69. Mills, G & Hoffmann, MR (1993) Photocatalytic degradation of pentachlorophenol on TiO2 particles: identification of intermediates and mechanism of reaction. Environ. Sci. Technol. 27: 1681–1689Google Scholar
  70. Mohn, WW & Kennedy, KJ (1992a) Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol. 58: 1367–1370Google Scholar
  71. Mohn, WW & Kennedy, KJ (1992b) Limited degradation of chlorophenols by anaerobic sludge granules. Appl. Environ. Microbiol. 58: 2131–2136Google Scholar
  72. Moos, LP, Kirsch, EJ, Wukasch, RF & Grady, CPL (1983) Pentachlorophenol biodegradation-1 Aerobic. Water Res. 17: 1575–1584Google Scholar
  73. Mueller, JG, Lantz, SE, Ross, D, Colvin, RJ, Middaugh, DP & Pritchard, PH (1993) Strategy using bioreactors and specially selected microorganisms for bioremediation of groundwater contaminated with creosote and pentachlorophenol. Environ. Sci. Technol. 27: 691–698Google Scholar
  74. Mueller, JG, Middaugh, DP, Lantz, SE & Chapman, PJ (1991) Biodegradation of Creosote and pentachlorophenol in contaminated groundwater: chemical and biological assessment. Appl. Environ. Microbiol. 57: 1277–1285Google Scholar
  75. Nevalainen, I, Kostyl, E, Nurmiaho-Lassila, E-L, Puhakka, JA & Salkinoja-Salonen, MS (1993) Dechlorination of 2,4,6-trichlorophenol by a nitrifying biofilm. Water Res. 27: 757–767Google Scholar
  76. Nicholson, DK, Woods, SL, Istok, JD & Peek, DC (1992) Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium. Appl. Environ. Microbiol. 58: 2280–2286Google Scholar
  77. Nwoga, J & Bittar, E (1991) An investigation of the sensitivity of the ouabain-insensitive sodium efflux in single barnacle muscle fibers to pentachlorophenol. Toxicol. Appl. Pharmacol. 108: 330–341Google Scholar
  78. O'Reilly, KT & Crawford, RL (1989) Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl. Environ. Microbiol. 55: 2113–2118Google Scholar
  79. Orser, CS, Lange, CC, Xun, L, Zahrt, TC & Schneider, BJ (1993a) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J. Bacteriol. 175: 411–416Google Scholar
  80. Orser, CS, Dutton, J, Lange, C, Jablonski, P, Xun, L & Hargis, M (1993b) Characterization of a Flavobacterium glutathione Stransferase gene involved in reductive dechlorination. J. Bacteriol. 175: 2640–2644Google Scholar
  81. Périé, FH & Gold, MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57: 2240–2245Google Scholar
  82. Pignatello, JJ, Martinson, MM, Steiert, JG, Carlson, RE & Crawford, RL (1993) Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl. Environ. Microbiol. 46: 1024–1031Google Scholar
  83. Puhakka, JA & Järvinen, K (1992) Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents. Water Res. 26: 765–770Google Scholar
  84. Radehaus, PM & Schmidt, SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol. 58: 2879–2885Google Scholar
  85. Rao, KR (1978) Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology. (pp. 3–18) Plenum Press, New YorkGoogle Scholar
  86. Roy-Arcand, L & Archibald, FS (1991) Direct dechlorination of chlorophenolic compounds by laccases from Trametes (Coriolus) versicolor. Enzyme Microb. Technol. 13: 194–203Google Scholar
  87. Ruckdeschel, G, Renner, G & Schwartz, K (1987) Effects of pentachlorophenol and some of its known and possible metabolites on different species of bacteria. Appl. Environ. Microbiol. 53: 2689–2692Google Scholar
  88. Ruddick, JNR (1991) Utility pole performance: pentachlorophenol distribution and content in recovered pine poles. Wood Protect. 1: 77–83Google Scholar
  89. Rutgers, M, Bogte, JJ, Breure, AM & vanAndel, JG (1993) Growth and enrichment of pentachlorophenol-degrading microorganisms in the nutristat, a substrate concentration-controlled continuous culture. Appl. Environ. Microbiol. 59: 3373–3377Google Scholar
  90. Saber, DL & Crawford, RL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 50: 1512–1518Google Scholar
  91. Salkinoja-Salonen, MS (1990) Biochemistry and ecology of the clean-up of pentachlorophenol from contaminated soils. Fifth Colloquium on Pulp and Paper Mill Effluents Sato K (1983) Effect of a pesticide, pentachlorophenol (PCP) on soil microflora. Plant & Soil 75: 417–426Google Scholar
  92. Salkinoja-Salonen, MS (1985) Effect of a pesticide, pentachlorophenol (PCP) on soil microflora. II Effect of PCP on bacterial flora in soil percolated with glycine or water. J. Gen. Appl. Microbiol. 31: 197–210Google Scholar
  93. Salkinoja-Salonen, MS (1987) Effect of increasing pentachlorophenol (PCP) concentrations on bacterial populations in glycine-percolated soils. Biol. Fertil. Soils 5: 1–5Google Scholar
  94. Schenk, T, Mller, R & Lingens, F (1990) Mechanisms of enzymatic dehalogenation of pentachlorophenol by Arthrobacter sp. strain ATCC 33790. J. Bacteriol. 172: 7272–7274Google Scholar
  95. Schenk, T, Mller, R, Mrsberger, F, Otto, MK & Lingens, F (1989) Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790. J. Bacteriol. 177: 5487–5491Google Scholar
  96. Scheunert, I, Qiao, Z & Korte, F (1986) Comparative studies of the fate of atrazine-14C and pentachlorophenol-14C in various laboratory and outdoor soil-plant systems. J. Environ. Sci. Health B21: 457–485Google Scholar
  97. Seech, AG, Marvan, IJ & Trevors, JT (1994) On site/ex situ bioremediation of industrial soils containing chlorinated phenols and polycyclic aromatic hydrocarbons. In: Hinchee, RE, Leeson, A, Semprini, L & Ong, SK (Eds) Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds (pp. 451–455) Lewis Publishers, Boca Raton, FloridaGoogle Scholar
  98. Seech, AG, Trevors, JT & Bulman, TL (1991) Biodegradation of pentachlorophenol in soil: the response of physical, chemical, and biological treatments. Can. J. Microbiol. 37: 440–444Google Scholar
  99. Seigle-Murandi, F, Steiman, R & Benoit-Guyod, JL (1991) Biodegradation potential of some micromycetes for pentachlorophenol. Ecotox. Environ. Safety 21: 290–300Google Scholar
  100. Seigle-Murandi, F, Steiman, R, Benoit-Guyod, JL & Guiraud, P (1993) Fungal degradation of pentachlorophenol by micromycetes. J. Biotechnol. 30: 27–35Google Scholar
  101. Shimizu, Y, Yamazaki, S & Terashima, Y (1992) Sorption of anionic pentachlorophenol (PCP) in aquatic environments: the effect of pH. Water Sci. Technol. 25: 41–48Google Scholar
  102. Siahpush, AR, Lin, JE & Wang, HY (1992) Effect of adsorbents on degradation of toxic organic compounds by coimmobilized systems. Biotechnol. Bioeng. 39: 619–628Google Scholar
  103. Slater, JH, Lovatt, D, Weightman, AJ, Senior, E & Bull, AT (1979) The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. J. Gen. Microbiol. 114: 125–136Google Scholar
  104. Smejtek, P, Barstad, AW & Wang, S (1989) Pentachlorophenolinduced change of θ-potential and gel-to-fluid transition temperature in model lecithin membranes. Chem. Biolog. Interact. (1989) 71: 37–61Google Scholar
  105. Stanlake, GJ & Finn, RK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 44: 1421–1427Google Scholar
  106. Steiert, JG & Crawford, RL (1986) Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem. Biophys. Res. Commun. 141: 825–830Google Scholar
  107. Steiert, JG, Pignatello, JJ & Crawford, RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53: 907–910Google Scholar
  108. Steiert, JG, Thoma, WJ, Ugurbil, K & Crawford, RL (1988) 31P Nuclear magnetic resonance studies of effects of some chlorophenols on Escherichia coli and a pentachlorophenol-degrading bacterium. J. Bacteriol. 170: 4954–4957Google Scholar
  109. Suzuki, T (1978) Enzymatic methylation of pentachlorophenol and its related compounds by cell-free extracts of Mycobacterium sp. isolated from soil. J. Pesticide Sci. 3: 441–443Google Scholar
  110. Suzuki, T (1983) Methylation and hydroxylation of pentachlorophenol by Mycobacterium sp. isolated from soil. J. Pesticide Sci. 8: 419–428Google Scholar
  111. Topp, E, Crawford, RL & Hanson, RS (1988) Influence of a readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp. Appl. Environ. Microbiol. 54: 2452–2459Google Scholar
  112. Topp, E & Hanson, RS (1990a) Factors influencing the survival and activity of a pentachlorophenol-degrading Flavobacterium sp. in soil slurries. Can. J. Soil Sci. 70: 83–91Google Scholar
  113. Topp, E & Hanson, RS (1990b) Degradation of pentachlorophenol by a Flavobacterium species grown in continuous culture under various nutrient limitations. Appl. Environ. Microbiol. 56: 541–544Google Scholar
  114. Topp, E, Xun, L & Orser, CS (1992) Biodegradation of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATC 39723 is accompanied by cyanogenesis. Appl. Environ. Microbiol. 58: 502–506Google Scholar
  115. Trevors, JT (1982) Effect of temperature on the degradation of pentachlorophenol by Pseudomonas species. Chemosphere 11: 471–475Google Scholar
  116. Trevors, JT (1983) Effect of pentachlorophenol on the membrane fluidity of Pseudomonas fluorescens. FEMS Microbiol. Lett. 16: 331–334Google Scholar
  117. Trevors, JT, Mayfield, CI & Innis, WE (1982) Effect of the sequence of exposure to chlorophenols in short-term bacterial bioassays. Arch. Environ. Contam. Toxicol. 11: 203–207Google Scholar
  118. Trevors, JT, VanElsas, JD, Lee, H & VanOverbeek, LS (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb. Release 1: 61–69Google Scholar
  119. Uotila, JS, Kitunen, VH, Apajahlahti, JHA & Salkinoja-Salonen, MS (1992) Environment-dependent mechanism of dehalogenation by Rhodococcus chlorophenolicus PCP-1. Appl. Microbiol. Biotechnol. 38: 408–412Google Scholar
  120. Uotila, JS, Salkinoja-Salonen, MS & Apajalahti, JHA (1991) Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-1. Biodegradation 2: 25–31Google Scholar
  121. Valo, RJ, Apajalahti, J & Salkinoja-Salonen, MS (1985) Studies on the physiology of microbial degradation of pentachlorophenol. Appl. Microbiol. Biotechnol. 21: 313–319Google Scholar
  122. Valo, R, Kitumen, V, Salkinoja-Salonen, MS & Risnen, S (1984) Chlorinated phenols as contaminants of soil and water in the vicinity of two Finnish sawmills. Chemosphere 13: 835–844Google Scholar
  123. Wall, AJ & Stratton, GW (1994) Effects of a chromated-copper arsenate wood preservative on the bacterial degradation of pentachlorophenol. Can. J. Microbiol. 40: 388–392Google Scholar
  124. Watanabe, I (1977) Pentachlorophenol-decomposing and PCP-tolerant bacteria in field soil treated with PCP. Soil Biol. Biochem. 9: 99–103Google Scholar
  125. Watanabe, I (1978) Pentachlorophenol (PCP) decomposing activity of field soils treated annually with PCP. Soil Biol. Biochem. 10: 71–75Google Scholar
  126. Wegman, RCC & van denBroek, HH (1983) Chlorophenols in river sediment in the Netherlands. Water Res. 17: 227–230Google Scholar
  127. Wegman, RCC & Hofstee, AWM (1979) Chlorophenols in surface waters of the Netherlands (1976–1977). Water Res. 13: 651–657Google Scholar
  128. Wester, RC, Maibach, HI, Sedik, L, Melendres, J, Wade, M & Dizio, S (1993) Percutaneous absorption of pentachlorophenol from soil. Fundam. Appl. Toxicol. 20: 68–71Google Scholar
  129. Wild, SR, Harrad, SJ & Jones, KC (1993) Chlorophenols in digested U.K. sewage sludges. Water Res. 27: 1527–1534Google Scholar
  130. Woods, SL, Ferguson, JF & Benjamin, MM (1989) Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ. Sci. Technol. 23: 62–68Google Scholar
  131. Wu, W-M, Bhatnagar, L & Zeikus, JG (1993) Performance of anaerobic granules for degradation of pentachlorophenol. Appl. Environ. Microbiol. 59: 389–397Google Scholar
  132. Xun, L & Orser, CS (1991a) Biodegradation of triiodophenol by cell-free extracts of a pentachlorophenol-degrading Flavobacterium sp. Biochem. Biophys. Res. Commun. 174: 43–48Google Scholar
  133. Xun, L & Orser, CS (1991b) Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA). J. Bacteriol. 173: 2920–2926Google Scholar
  134. Xun, L & Orser, CS (1991c) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J. Bacteriol. 173: 4447–4453Google Scholar
  135. Xun, L, Topp, E & Orser, CS (1992a) Glutathione is the reducing agent for the reductive dehalogenation of tetrachloro-p-hydroquinone by extracts from a Flavobacterium sp. Biochem. Biophys. Res. Commun. 182: 361–366Google Scholar
  136. Xun, L, Topp, E & Orser, CS (1992b) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J. Bacteriol. 174: 2898–2902Google Scholar
  137. Xun, L, Topp, E & Orser, CS (1992c) Confirmation of oxidative dehalogenation of pentachlorophenol by a Flavobacterium pentachlorophenol hydroxylase. J. Bacteriol. 174: 5745–5747Google Scholar
  138. Xun, L, Topp, E & Orser, CS (1992d) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J. Bacteriol. 174: 8003–8007Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Kelly A. McAllister
    • 1
  • Hung Lee
    • 2
  • Jack T. Trevors
    • 2
  1. 1.Department of MicrobiologyUniversity of GuelphGuelphCanada
  2. 2.Department of Environmental BiologyUniversity of GuelphGuelphCanada

Personalised recommendations