, Volume 62, Issue 3, pp 177–185 | Cite as

Chromosomal evolution of South American Columbiformes (Aves)

  • E. J. De Lucca


Karyotypes are compared of 14 species of Brazilian Columbiformes (family Columbidae): Claravis pretiosa (2n=74), Columba cayennensis (2n=76), Columba picazuro (2n=76), Columba speciosa (2n=76), Columbina minuta (2n=76), Columbina passerina (2n=76), Columbina picui (2n=76), Columbina talpacoti (2n=76), Geotrygon montana (2n=86), Leptotila rufaxilla (2n=76), Leptotila verreauxi (2n=78), Scardafella squammata (2n=78), Uropelia campestris (2n=68) and Zenaida auriculata (2n=76). The macrochromosomes of each species were analysed by conventional Giemsa staining, cytobiometrically and with G-and C-banding.

All species studied are characterized by typical bird karyotypes with a few pairs of macrochromosomes and many microchromosomes.

The morphology and relative length of the Z chromosome are nearly the same in all species, but the W chromosome shows variation. The G-band patterns of the first pair in Columbiformes show a large positive band distally in the long arm, common to all species of the order. The constitutive heterochromatin is restricted to the centromeres of the macro- and microchromosomes. The W is the most heterochromatic chromosome in all species studied.

Studies of relative lengths, arm ratios and G- and C-banding patterns showed that in Columbiformes pairs 3, 4 and 5 are the most stable. The types of rearrangements distinguishing between species vary among the genera: pericentric inversions in Columba; fusions and translocations in Uropelia; centric fissions in Geotrygon; fusions, translocations, para and pericentric inversions in Columbina, Leptotila, Zenaida and Scardafella.

On the basis of the karyological findings the phylogenetic relationships of the Brazilian Columbiformes are discussed.


Phylogenetic Relationship Relative Length Chromosomal Evolution Positive Band Pericentric Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beçak, W. & Beçak, M. L., 1969. Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics 8: 247–262.Google Scholar
  2. Britten, R. J. & Davidson, E. H., 1971. Repetitive and non-repetitive DNA sequences and speculation on the origins of evolutionary novelty. O. Rev. Biol. 46: 111–133.Google Scholar
  3. De Agular, M. L. R., 1968. Estudo do complemento cromossômico em algumas ordens de Aves. Tese de Doutoramento. Universidade de São Paulo, Brasil.Google Scholar
  4. De Lucca, E. J. De & Aguiar, M. L. R., 1976. Chromosomal evolution in Columbiformes (Aves). Caryologia 29:59–68.Google Scholar
  5. De Lucca, E. J. De & Aguiar, M. L. R., 1978. A karyosystematic study in Columbiformes (Aves). Cytologia 43: 249–253.Google Scholar
  6. De Lucca, E. J., 1980. Mecanismos de evolução cromossômica em Columbiformes e Psittaciformes (Aves). Tese de Livre Docência. Instituto Básico de Biologia Médica e Agricola, UNESP, Brazil.Google Scholar
  7. Ford, C. E. & Hamerton, L. T. L., 1956. A colehieine hypotonic citrate squash sequence for mammalian chromosomes. Stain Techn. 31: 247–251.Google Scholar
  8. Goodwin, D., 1959. Taxonomic notes on the American ground-doves. Auk 76: 510–516.Google Scholar
  9. Goodwin, D., 1970. Pigeons and doves of the world. Trustees of the British Museum (Natural History), London, 2nd ed.Google Scholar
  10. Hammar, B., 1966. The karyotypes of nine birds. Hereditas 55: 367–385.Google Scholar
  11. Hellmayr, C. E. & Conover, B., 1942. Catalogue of birds of the Americas. Field Mus. Nat. Hist., Zool. Ser. 13, pt. 1. no. 1.Google Scholar
  12. Itoh, M., Ikeuchi, T., Shimba, H., Mori, M., Sasaki, M. & Makino, S., 1969. A comparative study in fourteen species of birds. Jap. J. Genet. 44: 163–170.Google Scholar
  13. Johnston, R. F., 1961. The genera of American ground doves. Auk 78: 372–378.Google Scholar
  14. Jorge, W. & Benirschke, K., 1977. Centromeric heterochromatin and G-banding of the red brocket deer, Mazama americana temama (Cervoidea, Artiodactyla) with a probably non-Robertsonian translocation. Cytologia 42: 711–721.Google Scholar
  15. Levan, A., Fredga, K. & Sandberg, A. A., 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.Google Scholar
  16. Linnaeus, C., 1758. See Goodwin, 1970.Google Scholar
  17. Lopes, C. R., De Lucca, E. J., Andrade, A. M. & Faulin, C. M. J., 1979. A phylogenetic interpretation of chromosomal and electrophoretic data in Columbiformes. Cytologia 44: 39–47.Google Scholar
  18. Makino, S., Udagawa, T. & Yamashina, Y., 1956. Karyotype studies in birds 2: A comparative study of chromosomes in the Columbidae. Caryologia 8: 275–293.Google Scholar
  19. Ohno, S., Stenius, C., Christian, L. C., Beçak, W. & Beçak, M. L., 1964. Chromosomal uniformity in the avian subclass Carinatae. Chromosoma 15: 280–288.Google Scholar
  20. Peters, G. L., 1937. Check-list of birds of the world (vol. 3). Harvard University Press.Google Scholar
  21. Pinto, O. M. O., 1964. Ornitologia brasiliense (vol. I). Departamento de Zoologia. Secretaria da Agricultura do Estado de São Paulo.Google Scholar
  22. Ray-Chaudhuri, R., Sharma, I. & Ray-Chaudhuri, S. P., 1969. A comparative study of the chromosomes of birds. Chromosoma 26: 148–168.Google Scholar
  23. Seabright, M., 1971. A rapid banding technique for human chromosomes. Lancet 2: 971–972.Google Scholar
  24. Stock, A. D., Arrighi, F. E. & Stefos, K., 1974. Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken, ring necked dove and domestic pigeon. Cytogenet. Cell Genet. 13: 410–418.Google Scholar
  25. Stock, A. D. & Mengden, G. A., 1975. Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma 50: 69–77.Google Scholar
  26. Takagi, N., Itoh, M. & Sasaki, M., 1972. Chromosome studies in four species of Ratitae (Aves). Chromosoma 36: 281–291.Google Scholar
  27. takagi, N. & Sasaki, M., 1974. A phylogenetic study of bird karyotypes. Chromosoma 46: 91–120.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • E. J. De Lucca
    • 1
  1. 1.Departamento de Genética-IBBMAUniversidade Estadual PaulistaBotucatuBrazil

Personalised recommendations