Advertisement

Earth, Moon, and Planets

, Volume 41, Issue 2, pp 173–190 | Cite as

The interstellar medium and the glacial eras during the Pleistocene

  • R. D. Tarsia
  • R. J. Quiroga
  • G. A. Pellegatti franco
Article
  • 16 Downloads

Abstract

We study the hypothetical conditions for interstellar clouds dense enough to produce glaciations on the Earth. A simple differential formula (adequate to give lower limits to dust absorption) is used to relate mean temperatures and visual albedos today and during the glacial eras. For this, the geological and oceanographical records of the Pleistocene are used. The temperature decays are associated to an absorption of the solar light in visual magnitudes mv. As the effective albedo, integrated in all wavelengths are lower than the corresponding visual value, the adoption of a visual scale leads to an underestimation of the actual amount of dust. A minimum dust absorption δmv= 0.02 mag, necessary to start a glacial era is then obtained. This should mean interstellar clouds with dust densities of 4100 mag. pc-1 and sizes of 0.3 pc or more, taking into account the time span of the glacial eras and the mean velocity of the Sun with respect to the LSR. Such clouds were never observed and are uncompatible with what is known from the interstellar medium: the ‘glaciation clouds’ should be clouds with densities 50–100 times above the tolerable value for gravitational stability; on the other hand, the necessary number of clouds per cubic parsec should produce the collapse of the galactic disc as a whole. From a comparative analysis of the temperatures of the other planets it seems to be that the actual thermal temperatures in their surfaces depend less than one expects from the visual albedos. From this it is raised the suspicion that the cause of the ice ages was the Sun itself.

Keywords

Dust Pleistocene Interstellar Medium Dust Absorption Solar Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C.: 1973, Astrophysical Quantities, The Athlone Press 3rd Ed.Google Scholar
  2. Bohlin, R., Savage, B. D., and Drake, J.: 1978, Ap. J. 224, 132.Google Scholar
  3. Frederick, J. L.: 1981, Remote Sensing Environment 11, 337.Google Scholar
  4. Hanel, R., Conrath, B. J., Knude, V., Pearl, J., and Perraglia, A.: 1983, Icarus 53, 262.Google Scholar
  5. Hanel, R., Conrath, B. J., Flasar, F. M., Kunde, V., Maguire, W., Pearle, J., Pirraglia, J., Samuelson, R., Cruikshank, D., Gautier, D., Gierasch, P., Horn, L., and Schulte, P.: 1986, Science 233, 70.Google Scholar
  6. Hays, D. J., Imbrie, J., and Shackleton, N. J.: 1976, Science 194, 1121.Google Scholar
  7. Hoyle, F.: 1984, Earth, Moon, and Planets 31, 229.Google Scholar
  8. Goody, R. M.: 1974, ‘The Planets Today’, Royal Society of London, pp. 47.Google Scholar
  9. Lamb, H. H.: 1972, ‘Climate: Present Past and Future’, Metherem and Co.Google Scholar
  10. Lockwood, G.: 1975, Science 190, 500.Google Scholar
  11. Melnick, G., Russel, W., Gosnell, T. R., and Harwit, M.: 1983, Icarus 53, 310.Google Scholar
  12. Morrison, N. and Morrison, D.: 1976, Mercury 5, 34.Google Scholar
  13. Morrison, N. and Gregory, S.: 1985, Mercury 14, 154.Google Scholar
  14. Muhleman, D., Orton, G., and Berge, G. S.: 1979, Ap. J. 234, 733.Google Scholar
  15. Pellegatti-Franco, G. A., Tarsia, R. D., and Quiroga, R. J.: 1985, Astrophys. Space Sci. 111, 343.Google Scholar
  16. Petropoulos, B. and Banos, C.: 1984, Astron. Astrophys. Supp. 58, 145.Google Scholar
  17. Quiroga, R. J.: 1983, Astrophys. Space Sci. 93, 37.Google Scholar
  18. Reis Cordeiro, R.: 1987, Master Work, Universidade Federal de Minae Gerais.Google Scholar
  19. Saari, J., Shorthill, R. W., and Winter, D.: 1972, Moon 5, 179.Google Scholar
  20. Shackleton, N., Backman, J., Zimmermann, Kent, D., Hall, M., Roberts, D., Smittker, A. K., Krumsier, K., Morton, A., Murray, J. and Wesbberg-Smith, J.: 1984, Nature 307, 620.Google Scholar
  21. Valdez, F.: 1978, Mercury 7, 94.Google Scholar
  22. Voigt, H. D.: 1984, Landolt Börnstein Neue Series, Vol. VI-1, 167.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • R. D. Tarsia
    • 1
  • R. J. Quiroga
    • 1
  • G. A. Pellegatti franco
    • 1
  1. 1.Departamento de FisicaUniversidade Federal de Minas Gerais, Observatório de PiedadeBelo HorizonteBrazil

Personalised recommendations