, Volume 20, Issue 2, pp 255–265 | Cite as

Origin and evolution of teosinte (Zea mexicana (Schrad.) Kuntze)

  • J. M. J. De Wet
  • J. R. Harlan
  • C. A. Grant


The tripartite hypothesis postulates that cultivated maize was derived from a wild podcorn which was once indigenous to the lowlands of South America; that this wild Z. mays is now extinct; that Z. mexicana (teosinte) originated from natural hybridization of Z. mays and a species of Tripsacum after cultivated maize was introduced into Central America; and that most modern races of maize resulted from introgression of primitive maize with teosinte, Tripsacum, or both. This hypothesis has been criticized primarily on the basis that it involves too many theories for the available facts.

The basic question that needs to be answered is whether maize was domesticated from a wild Z. mays or from Z. mexicana. The oldest known archaeological remains suggest that a wild Z. mays existed before Z. mexicana came on the scene. This question can only be settled by further archaeological research.

Accepting the assumption that a species of Zea which is distinctly different from Z. mexicana gave rise to maize, however, does not necessarily lead to accepting a hybrid origin for teosinte. Judging from present day breeding behaviour, Z. mays and Z. mexicina are conspecific and only distantly related to Tripsacum. This cytogenetic similarity could be explained on the basis of extensive introgression between teosinte and maize. Introgression of germplasm from teosinte into maize is obvious wherever these taxa are sympatric. This pattern of a crop absorbing genes of its wild progenitor across a weedy race, is commonly encountered in all other cereals. Should this not be true in maize, it certainly will be a rare exception.

The assumption that teosinte originated as a hybrid between domesticated Z. mays and a species of Tripsacum remains an intriguing possibility. However, after weighing the pros and cons of the available morphological and genetical evidence, the level of confidence with which this hypothesis can be excepted appears rather low.


Maize Plant Physiology Basic Question Genetical Evidence Natural Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson E. & Erickson R. O., 1941. Antethetical dominance in North American maize. Proc. Natn. Acad. Sci. 27:436–440.Google Scholar
  2. Barghoorn E., Wolfe M. K. & Clisby K. H., 1954. Fossil maize from the Valley of Mexico. Bot. Mus. Leafl. Harv. Univ. 16:229–240.Google Scholar
  3. Beadle G. W., 1932. The relation of crossing over to chromosome association in Zea-Euchlaena hybrids. Genetics 17:481–501.Google Scholar
  4. Brown W. L., 1949. Number and distribution of chromosome knobs in United States maize. Genetics 34:524–536.Google Scholar
  5. Chaganti, R. S. K., 1965. Cytogenetic studies of Maize-Tripsacum hybrids and their derivaties. Ph. D. thesis, Bussey Inst. Harvard Univ. Publ., Cambridge.Google Scholar
  6. Collins G. N. & Kempton J. H. 1914. A hybrid between Tripsacum and Euchlaena. J. Wash. Acad. Sci. 4:114–117.Google Scholar
  7. Collins G. N. & Kempton J. H., 1916. Parthenogenesis. J. Hered. 7:106–118.Google Scholar
  8. Cutler H. C. & Anderson E., 1941. A preliminary survey of the genus Tripsacum. Ann. Mo. Bot. Gdn. 28:249–269.Google Scholar
  9. Wet de J. M. J., Lambert R. J., Harlan J. R. & Naik S. N., 1970. Stable triploid hybrids among Zea-Tripsacum-Zea backcross populations. Caryologia 23:183–187.Google Scholar
  10. Emerson R. A. & Beadle G. W., 1930. A fertile tetraploid hybrid between Euchlaena perennis and Zea mays. Am. Nat. 64:304–315.Google Scholar
  11. Farquharson L. I., 1957. Hybridization of Tripsacum and Zea. J. Hered. 48:295–299.Google Scholar
  12. Galinat W. C., 1963. Form and function of plant structures in the American Maydeae and their significance for breeding. Econ. Bot. 17:51–59.Google Scholar
  13. Galinat, W. C., 1970. The cupule and its role in the origin and evolution of maize. Agric. Exp. Stn Univ. Mass. Bull. No. 585.Google Scholar
  14. Galinat W. C., Chaganti R. S. K. & Hager F. D., 1964. Tripsacum as a possible amphidiploid of wild maize and Manisuris. Bot. Mus. Leafl. Harv. Univ. 20:289–316.Google Scholar
  15. Harlan J. R., Wet J. M. J. de, Naik S. M. & Lambert R. J., 1970. Chromosome pairing within genomes in Maize X Tripsacum hybrids. Science 167:1247–1248.Google Scholar
  16. Hernandez, X. E. & Randolph, L. F., 1950. Decripcion de los Tripsacum diploides de Mexico; Tripsacum maizar y Tripsacum zopilotense. Spp. Nov. Ofic. Estud. Esp. SAG. Fol. Tec. No. 4.Google Scholar
  17. Hitchcock A. S., 1922. A perennial species of teosinte. J. Wash. Acad. Sci. 12:205–208.Google Scholar
  18. Hitchcock. A. S., 1950. Manual of the grasses of the United States. U.S. Dept. Agric. Misc. Publ. 200.Google Scholar
  19. Irwin H. & Barghoorn E. S., 1965. Identification of the pollen of maize, teosinte and Tripsacum by phase contrast microscopy. Bot. Mus. Leafl. Harv. Univ. 21:37–57.Google Scholar
  20. Longley A. E., 1934. Chromosomes in hybrids between Euchlaena perennis and Zea mays. J. Agric. Res. 48:789–806.Google Scholar
  21. Longley A. E., 1941. Chromosome morphology in maize and its relatives. Bot. Rev. 7:262–289.Google Scholar
  22. Longley A. E., 1952. Chromosome morphology in maize and its relatives. Bot. Rev. 18:399–412.Google Scholar
  23. Longley A. E. & Kato T. A., 1965. Chromosome morphology of certain races of maize in Latin America. Int. Center for Imp. Maize and Wheat, Chapingo, Mexico, Res. Bull. 1.Google Scholar
  24. Maguire M. P., 1957. A study of homology between a terminal portion of Zea chromosome 2 and a segment derived from Tripsacum. Genetics 45:195–209.Google Scholar
  25. Maguire M. P., 1960. A study of pachytene chromosome pairing in a corn-Tripsacum hybrid derivative. Genetics 45:651–664.Google Scholar
  26. Maguire M. P., 1961. Divergence in Tripsacum and Zea chromosomes. Evolution 15:394–400.Google Scholar
  27. Maguire M. P., 1962. Common loci in corn and Tripsacum. J. Hered. 53:87–88.Google Scholar
  28. Mangelsdorf P. C., 1961. Introgression in maize. Euphytica 10:157–168.Google Scholar
  29. Mangelsdorf P. C., 1968. Cryptic genes for ‘Tripsacoid’ characteristics in maiz Amargo of Argentina and other Latin-American countries. Bol. Soc. Argentina Bot. 12:180–187.Google Scholar
  30. Mangelsdorf P. C. & Cameron J. W., 1942. Western Guatemala; a secondary center of origin of cultivated maize varieties. Bot. Mus. Leafl. Harv. Univ. 10:217–252.Google Scholar
  31. Mangelsdorf P. C. & Lister R. H., 1956. Archaeological evidence on the evolution of maize in northwestern Mexico. Bot. Mus. Leafl. Harv. Univ. 17:151–178.Google Scholar
  32. Mangelsdorf P. C., MacNeish R. S. & Galinat W. C., 1964. Domestication of corn. Science 143:538–545.Google Scholar
  33. Mangelsdorf P. C., MacNeish R. & Galinat W. C., 1967. Prehistoric maize, teosinte, and Tripsacum from Tamaulipas, Mexico. Bot. Mus. Leafl. Harv. Univ. 22:33–62.Google Scholar
  34. Mangelsdorf P. C. & Reeves R. G., 1931. Hybridization of maize, Tripsacum, and Euchlaena. J. Hered. 22:328–343.Google Scholar
  35. Mangelsdorf, P. C. & Reeves, R. G., 1939. The origin of Indian corn and its relatives. Tex. Agric. Exp. Stn Bull. 574.Google Scholar
  36. Mangelsdorf P. C. & Reeves R. G., 1959. The origin of corn. III. Modern races, the product of teosinte introgression. Bot. Mus. Leafl. Harv. Univ. 18:389–411.Google Scholar
  37. Mangelsdorf P. C. & Smith C. E., 1949. New archaeological evidence on evolution in maize. Bot. Mus. Leafl. Harv. Univ. 13:213–247.Google Scholar
  38. Prywer L. C., 1960. Estudios citologicos sobre algunas especies del genera Tripsacum. Bol. Soc. Bot. Mex. 25:1–21.Google Scholar
  39. Prywer L. C., 1965. Cytological evidence of natural intertribal hybridization of Tripsacum and Manisuris. Am. J. Bot. 52:182–184.Google Scholar
  40. Randolph L. F., 1952. New evidence on the origin of maize. Am. Nat. 86:193–202.Google Scholar
  41. Randolph L. E., 1955. Cytogenetic aspects of the origin and evolutionary history of corn. Corn and Corn Improvement, G. F. Sprague (Ed.), Acad. Press, N. Y.Google Scholar
  42. Randolph L. F., 1959. The origin of maize. Indian J. Genet. 19:1–12.Google Scholar
  43. Reeves, R. G., 1953. Comparative morphology of the American Maydeae. Tex. Agric. Exp. Stn Bull. 761.Google Scholar
  44. Reeves R. G. Mangelsdorf P. C., 1959. The origin of corn. II. Teosinte a hybrid of corn and Tripsacum. Bot. Mus. Leafl. Narv. Univ. 18:357–387.Google Scholar
  45. Rogers, J. S., 1950. Fertility relationship in maize-teosinte hybrids. Tex. Agric. Exp. Stn Bull. 730-1-14.Google Scholar
  46. Shaver D. L., 1962. A study of meiosis in perennial teosinte in tetraploid maize and in their tetraploid hybrid. Caryologia 15:43–57.Google Scholar
  47. Tantravahi, R. V., 1968. Cytology and crossability relationships of Tripsacum. Ph. D. thesis, Bussey Inst. Harv. Univ. publ., Cambridge.Google Scholar
  48. Ting, Y. C., 1964. Chromosomes of maize-teosinte hybrids. Ph. D. thesis, Bussey Inst. Harv. Univ. publ., Cambridge.Google Scholar
  49. Weatherwax P., 1955. Early history of corn and theories as to its origin. Corn and Corn Improvement, G. F. Sprague (Ed.), Acad. Press, N. Y.Google Scholar
  50. Wilkes, H. G., 1967. Teosinte: The closest relative of maize. Ph D. thesis, Bussey Inst. Harv. Univ. publ., Cambridge.Google Scholar
  51. Wilkes H. G., 1970. Teosinte introgression in the maize of the Nobogame Valley. Bot. Mus. leafl. Harv. Univ., Cambridge, 22:297–311.Google Scholar

Copyright information

© H. Veenman En Zonen N.V. 1971

Authors and Affiliations

  • J. M. J. De Wet
    • 1
  • J. R. Harlan
    • 1
  • C. A. Grant
    • 1
  1. 1.Crop Evolution Laboratory, Department of AgronomyUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations