Genetica

, Volume 46, Issue 3, pp 297–318

A cytogenetic analysis of meiotic drive in the mosquito, Aedes aegypti (L.)

  • M. E. Newton
  • R. J. Wood
  • D. I. Southern
Article

Meiotic drive in Aedes aegypti (L.) is shown by a Giemsa C-banding technique to be associated with preferential isochromatid breakage of the X chromosome during male meiosis. These breaks remain open at least until anaphase-I and, since the range of cells affected is proportional to the sensitivity of the X chromosome to the Distorter gene, it is argued that they are directly related to the decreased number of spermatozoa found in distorting males. This reduction is considered to be attributable to the degeneration of more X- than Y-bearing spermatids but it is probable that some non-functional X-bearing spermatozoa are also produced. Chromosome breakage is almost completely confined to four sites, two adjacent to the centromere, one just proximal to the intercalary band and another about the centre of the unbanded arm. Although the first three of these lie within a region in which crossing-over does not take place, fragmentation occurs more frequently in a chiasmate arm than in one devoid of chromatid exchange.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akstein, E. (1962). The chromosomes of Aedes aegypti, and of some other species of mosquitoes. Bull. Res. Coun. Israel 11B3: 146–155.Google Scholar
  2. Bhalla, S. C. (1970). Paracentric inversions and detection of sex linked recessive lethals in Aedes aegypti. Can. J. Genet. Cytol. 12: 635–650.Google Scholar
  3. Bhalla, S. C. (1973). Sex-linked translocations, semisterility and linkage alterations in the mosquito Aedes aegypti. Can. J. Genet. Cytol. 15: 9–20.Google Scholar
  4. Brat, S. V. & K. S., Rai (1973). An analysis of chiasma frequencies in Aedes aegypti. Nucleus, Calcutto 16: 184–193.Google Scholar
  5. Cameron, D. R. & R., Moav (1957). Inheritance in Nicotiana tabacum. XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics, Princeton 42: 326–335.Google Scholar
  6. Christophers, S. R. (1960). Aedes aegypti (L.). The yellow fever mosquito. University Press, Cambridge.Google Scholar
  7. Cooper, K. W. (1965). Normal spermatogenesis in Drosophila. In: M., Demerec, (Ed.), Biology of Drosophila. Hafner, New York & London. Chapter 1, pp. 1–61.Google Scholar
  8. Craig, G. B. & W. A., Hickey (1967). Genetics of Aedes aegypti. In: J. W., Wright & R., Pal (Eds.), Genetics of insect vectors of disease. Elsevier, Amsterdam, London & New York. Chapter 3, pp. 67–131.Google Scholar
  9. Craig, G. B., W. A., Hickey & R. C., Vandehey (1960). An inherited male-producing factor in Aedes aegypti. Science, N.Y. 132: 1887–1889.Google Scholar
  10. Craig, G. B., R. C., Vandehey & W. A., Hickey (1961). Genetic variability in populations of Aedes aegypti. Bull. Wld Hlth Org. 24: 527–539.Google Scholar
  11. Denell, R. E. & B. H., Judd (1969). Segregation distorter in D. melanogaster males: An effect of female genotype on recovery. Molec. gen. Genetics 105: 262–274.Google Scholar
  12. Elzinga, R. J. (1961). A comparison in time of egg hatching between male and female Aedes aegypti (L.). Mosquito News 21: 307–310.Google Scholar
  13. Erickson, J. (1963). Cytological study of a case of meiotic drive. Drosoph. Inf. Serv. 38: 76.Google Scholar
  14. Erickson, J. (1965). Meiotic drive in Drosophila involving chromosome breakage, Genetics, Princeton 51: 555–571.Google Scholar
  15. Hausermann, W. & H. F., Nijhout (1975). Permanent loss of male fecundity following sperm depletion in Aedes aegypti (L.). J. med. Entomol. 11: 707–715.Google Scholar
  16. Hickey, W. A. (1970). Factors influencing the distortion of sex ratio in Aedes aegypti. J. Med. Entomol. 7: 727–735.Google Scholar
  17. Hickey, W. A. & G. B., Craig (1966a). Genetic distortion of sex ratio in a mosquito, Aedes aegypti. Genetics, Princeton 53: 1177–1196.Google Scholar
  18. Hickey, W. A. & G. B., Craig (1966b). Distortion of sex ratio in populations of Aedes aegypti. Can. J. Genet. Cytol. 8: 260–278.Google Scholar
  19. Lewis, K. R. & B., John (1966). The meiotic consequences of spontaneous chromosome breakage. Chromosoma 18: 287–304.Google Scholar
  20. Lindsley, D. L. & E. H., Grell (1969). Spermiogenesis without chromosomes in Drosophila melanogaster. Genetics, Princeton 61: Supplement 69–78.Google Scholar
  21. MacDonald, W. W. & P. M., Sheppard (1965). Cross-over values in the sex chromosomes of the mosquito Aedes aegypti and evidence of the presence of inversions. Ann. trop. Med. Parasit. 59: 74–87.Google Scholar
  22. McClelland, G. A. H. (1962). Sex-linkage in Aedes aegypti. Trans. R. Soc. trop. Med. Hyg. 56: 4.Google Scholar
  23. McDonald, P. T. & K. S., Rai (1970). Correlation of linkage groups with chromosomes in the mosquito, Aedes aegypti. Genetics, Princeton 66: 475–485.Google Scholar
  24. McGivern, J. J. & K. S., Rai (1972). A radiation-induced paracentric inversion in Aedes aegypti (L.). Cytogenetic and interchromosomal effects. J. Hered. 63: 247–255.Google Scholar
  25. McGivern, J. J. & K. S., Rai (1974). Sex-ratio distortion and directed alternate segregation of interchange complexes in a mosquito. J. Hered. 65: 71–77.Google Scholar
  26. Mescher, S. A. L. & K. S., Rai (1966). Spermatogenesis in Aedes aegypti. Mosquito News 26: 45–51.Google Scholar
  27. Newton, M. E., D. I., Southern & R. J., Wood (1974). X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding. Chromosoma 49: 41–49.Google Scholar
  28. Nicoletti, B. (1968). Il controllo genetico della meiosi. Atti Ass. genet. ital. 13: 3–71.Google Scholar
  29. Novitski, E., W. J., Peacock & J., Engel (1965). Cytological basis of sex ratio in Drosophila pseudoobscura. Science, N.Y. 148: 516–517.Google Scholar
  30. Peacock, W. J. & J., Erickson (1965). Segregation-distortion and regularly nonfunctional products of spermatogenesis in Drosophila melanogaster. Genetics, Princeton 51: 313–328.Google Scholar
  31. Peacock, W. J. & G. L. G., Miklos (1973). Meiotic drive in Drosophila: New interpretations of the Segregation distorter and sex chromosome systems. (In E.W. Caspari, Adv. genet., Vol. 17. Academic Press, New York & London, pp. 361–409.)Google Scholar
  32. Policansky, D. (1974) “Sex-ratio”, meiotic drive, and group selection in Drosophila pseudoobscura. Am. Nat. 108: 75–90.Google Scholar
  33. Policansky, D. & J., Ellison (1970). “Sex-ratio” in Drosophila pseudoobscura: spermiogenic failure. Science, N.Y. 169: 888–889.Google Scholar
  34. Sandler, L. & Y., Hiraizumi (1961). Meiotic drive in natural populations of Drosophila melanogaster. VIII. A heritable aging effect on the phenomenon of Segregation-distortion. Can. J. Genet. Cytol. 3: 34–46.Google Scholar
  35. Sandler, L., Y., Hiraizumi & I., Sandler (1959). Meiotic drive in natural populations of Drosophila melanogaster. I. The cytogenetic basis of Segregation-distortion. Genetics, Princeton 44: 233–250.Google Scholar
  36. Sandler, L. & E., Novitski (1957). Meiotic drive as an evolutionary force. Am. Nat. 91: 105–110.Google Scholar
  37. Sweeny, T. L. (1972). Sex ratio distortion caused by meiotic drive in Culex pipiens L. Thesis, University of California, Los Angeles.Google Scholar
  38. Tokuyasu, K. T., W. J., Peacock & R. W., Hardy (1972a). Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z. Zellforsch. mikrosk. Anat. 124: 479–506.Google Scholar
  39. Tokuyasu, K. T., W. J., Peacock & R. W., Hardy (1972b). Dynamics of spermiogenesis in Drosophila melanogaster. II. Coiling process. Z. Zellforsch. mikrosk. Anat. 127: 492–525.Google Scholar
  40. Trippa, G., A.de, Marco, A., Micheli & B., Nicoletti (1974). Recovery of SD chromosomes from Drosophila melanogaster males when heterozygous with structurally different second chromosomes. Can. J. Genet. Cytol. 16: 257–266.Google Scholar
  41. White, M. J. D. (1966). A case of spontaneous chromosome breakage at a specific locus occurring at meoisis. Aust. J. Zool. 14: 1027–1034.Google Scholar
  42. Wood, R. J. (1962). A preliminary note on sex ratio and hatching-response in eggs of Aedes aegypti (Linnaeus).Ann. trop. Med. Parasit. 56: 356–358.Google Scholar
  43. Wood, R. J. (1975). Lethal genes on the sex chromosomes concealed in a population of the mosquito Aedes aegypti L. Genetica 46: 49–66.Google Scholar
  44. Wood, R. J. (1976). Between-family variation in sex ratio in the Trinidad (T-30) strain of Aedes aegypti (L.) indicating differences in sensitivity to the meiotic drive gene M D. Genetica (in press).Google Scholar
  45. Zimmering, S., J. M., Barnabo, J., Femino & G. L., Fowler (1970). Progeny: sperm ratios and Segregation-distorter in Drosophila melanogaster. Genetica 41: 61–64.Google Scholar
  46. Zimmering, S. & G. L., Fowler (1968). Progeny: sperm ratios and non-functional sperm in Drosophila melanogaster. Genet. Res. 12: 359–363.Google Scholar
  47. Zimmering, S., L., Sandler & B., Nicoletti (1970). Mechanisms of meiotic drive. A. Rev. Genet. Vol. 4, 409–436.Google Scholar

Copyright information

© Martinus Nijhioff Publishers 1976

Authors and Affiliations

  • M. E. Newton
    • 1
  • R. J. Wood
    • 1
  • D. I. Southern
    • 1
  1. 1.Zoology DepartmentUniversity of ManchesterGreat Britain

Personalised recommendations