Advertisement

Vegetatio

, Volume 33, Issue 1, pp 33–41 | Cite as

On non-linear species response models in ordination

  • M. P. Austin
Article

Summary

Ordination techniques are plagued by the non-linearity of vegetation data. The purpose of ordination is discussed and considered to be the process of arranging samples (or species) in relation to one or more environmental gradients or abstract axes that may represent such gradients, the arrangement to be ecologically significant. The appropriateness of various models of vegetation to current ordination techniques is considered, particularly the gaussian species response curve. Two alternatives are suggested based on β-functions and an ecological response curve model incorporating competition between species.

Keywords

Ecological response curves Environmental gradient Gaussian ordination Indirect ordination Non-linearity Ordination Vegetation models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aart, P.J.M.van der. 1973. Distribution analysis of wolfspiders (Araneae, Lycosidae) in a dune area by means of principal component analysis. Neth. J. Zool. 23: 266–329.Google Scholar
  2. Aart, P.J.M.van der & N., Smeenk-Enserink. 1975. Correlations between distributions of hunting spiders (Lycosidae, Ctenidea) and environmental characteristics in a dune area. Neth. J. Zool. 25: 1–45.Google Scholar
  3. Anderson, A.J.B. 1971. Ordination methods in ecology. J. Ecol. 59: 713–726.Google Scholar
  4. Austin, M.P. 1972. Models and analysis of descriptive vegetation data. In J.N.R. Jeffers (ed.): Mathematical Models in Ecology. Symp. Brit. Ecol. Soc. 12: 61–86.Google Scholar
  5. Austin, M.P. 1977. Performance of four ordination techniques assuming three different non-linear species response models Vegetatio 33: 43–49.Google Scholar
  6. Austin, M.P. & P., Greig-Smith. 1968. The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J. Ecol. 56: 827–844.Google Scholar
  7. Austin, M.P. & I., Noy-Meir. 1971. The problem of non-linearity in ordination: experiments with two gradient models. J. Ecol. 59: 762–773.Google Scholar
  8. Bradley, J.V. 1968. Distribution-free Statistical Tests. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  9. Bray, J.R. & J.T., Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.Google Scholar
  10. Clifford, H.T. & W., Stephenson. 1975. An Introduction to Numerical Classification. Academic Press. London.Google Scholar
  11. Curtis, J.T. 1959. The Vegetation of Wisconsin: an Ordination of Plant Communities. Univ. Wisconsin Madison.Google Scholar
  12. Dale, M.B. 1975. On objectives of methods of ordination. Vegetatio 30: 15–32.Google Scholar
  13. Ellenberg, H. 1954. Über einige Forschritte der kausalen Vegetationskunde. Vegetatio 5–6: 199–211.Google Scholar
  14. Fasham, M.J.R. 1976. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines. (manuscript).Google Scholar
  15. Gauch, H.G.Jr. 1973. The relationship between sample similarity and ecological data. Ecology 55: 1377–1381.Google Scholar
  16. Gauch, H.G.Jr., G.B., Chase, & R.H., Whittaker. 1974. Ordination of vegetation samples by Gaussian species distribution. Ecology 55: 1382–1390.Google Scholar
  17. Gauch, H.G.Jr. & R.H., Whittaker, 1972a. Coenocline simulation. Ecology 53: 446–451.Google Scholar
  18. Gauch, H.G.Jr. & R.H., Whittaker. 1972b. Comparison of ordination techniques. Ecology 53: 868–875.Google Scholar
  19. Gauch, H.G., R.H. Whittaker, & T.R. Wentworth. 1976. A comparative study of reciprocal averaging and other ordination techniques. J. Ecol. (in press).Google Scholar
  20. Gittins, R. 1969. The application of ordination techniques. In I.H. Rorison (ed.); Ecological Aspects of the Mineral Nutrition of Plants Symp. Brit. Ecol. Soc. 1968, 9: 37–66.Google Scholar
  21. Goodall, D.W. 1954. Vegetational classification and vegetational continua. (Germ. summ.) Angew. Pflanzensoziol. [Wien], Festschr. Aichinger 1: 168–182.Google Scholar
  22. Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.Google Scholar
  23. Groenewoud, H.van 1965. Ordination and classification of Swiss and Canadian coniferous forests by various biometric and other methods. (Germ. summ.) Ber. Geobot. Inst. ETH, Stiftg Rübel, Zürich, 1964, 36: 28–102.Google Scholar
  24. Hill, M.O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.Google Scholar
  25. Hill, M.O. 1974. Correspondence analysis: a neglected multivariate method. J. Roy. Stat. Soc., Ser. C, 23: 340–354.Google Scholar
  26. Ihm, P. & H.van, Groenewoud. 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63: 767–777.Google Scholar
  27. Jeglum, J.K., C.F., Wehrhahn, & J.M.A., Swan. 1971. Comparisons of environmental ordinations with principal component vegetational ordinations for sets of data having different degrees of complexity. (French summ.) Can. J. For. Res. 1: 99–112.Google Scholar
  28. Kessel, S.R. & R.H. Whittaker. 1976. Comparisons of three ordination techniques. Vegetatio (in press).Google Scholar
  29. LaFrance, C.R. 1972. Sampling and ordination characteristics of computer-simulated individualistic communities. Ecology 53: 387–397.Google Scholar
  30. Loetsch, F., F. Zöhner, & K.E. Haller. 1973. Forest Inventory, Vol. 2. München. BLV.Google Scholar
  31. McIntosh, R.P. 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.Google Scholar
  32. Monk, C.D. 1965. Southern mixed hardwood forest of north central Florida. Ecol. Mongr. 35: 335–354.Google Scholar
  33. Mueller-Dombois, D. & H., Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.Google Scholar
  34. Mueller-Dombois, D. & H.P., Sims. 1966. Response of three grasses to two soils and a water table depth gradient. Ecology 47: 644–648.Google Scholar
  35. Noy-Meir, I. 1974a. Multivariate analysis of the semiarid vegetation in south-eastern Australia. II. Vegetation catenae and environmental gradients. Aust. J. Bot. 22: 115–140.Google Scholar
  36. Noy-Meir, I. 1974b. Catenation: quantitative methods for the definition of coenoclines. Vegetatio 29: 89–99.Google Scholar
  37. Noy-Meir, I. & R.H., Whittaker. 1976. Continuous multivariate methods in community analysis: some problems and developments. Vegetatio 33:Google Scholar
  38. Noy-Meir, I. & M.P., Austin. 1970. Principal component ordination and simulated vegetation data. Ecology 51: 551–552.Google Scholar
  39. Noy-Meir, I., D., Walker, & W.T., Williams. 1975. Data transformations in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63: 779–800.Google Scholar
  40. Orlóci, L. 1973. Ordination by resemblance matrices. (Germ. summ.) In R.H., Whittaker (ed.). Ordination and Classification of Communities. Han db. Veget. Sci. 5: 249–286. Dr. W. Junk B. V., The Hague.Google Scholar
  41. Orlóci, L. 1975. Multivariate Analysis in Vegetation Research. Dr. W. Junk b.v., The Hague. 276 pp.Google Scholar
  42. Poincaré, H. 1912. Calcul des probabilités. 2nd ed. Gauthier-Villars, Paris.Google Scholar
  43. Ramensky, L.G. 1930. Zur Methodik der vergleichenden Bearbeitung und Ordnung von Pflanzenlisten und anderen Objecten, die durch mehrere, verschiedenartige wirkende Faktoren bestimmt werden. Beitr. Biol. Pflanz. 18: 269–304.Google Scholar
  44. Swan, J.M.A. 1970. An examination of some ordination problems by use of simulated vegetation data. Ecology 51: 89–102.Google Scholar
  45. Westman, W.E. 1975. Edaphic climax pattern of the pygmy forest region of California. Ecol. Monogr. 45: 109–135.Google Scholar
  46. Whittaker, R.H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.Google Scholar
  47. Whittaker, R.H. 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.Google Scholar
  48. Whittaker, R.H. 1973a. Introduction. (Germ. summ.) In R.H., Whittaker (ed.). Ordination and Classification of Communities. Handb. Veget. Sci. 5: 3–6. Dr. W. Junk b.v., The Hague.Google Scholar
  49. Whittaker, R.H. 1976b. Direct gradient analysis. (Germ. summ.) In R.H., Whittaker (ed.): Ordination and Classification of Communities. Handb. Veget. Sci. 5: 7–51. Dr. W. Junk b.v., The Hague.Google Scholar
  50. Whittaker, R.H. & C.W., Fairbanks, 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology 39: 46–65.Google Scholar
  51. Whittaker, R.H. & H.G., GauchJr. 1973. Evaluation of ordination techniques. (Germ. Summ.) In R.H., Whittaker (ed.): Ordination and Classification of Communities. Handb. Veget. Sci. 5: 287–321. Dr. W. Junk b.v., The Hague.Google Scholar
  52. Whittaker, R.H. & H.G., GauchJr. 1976. Evaluation of ordination techniques. In R.H., Whittaker (ed.): Ordination of Plant Communities. Dr. W. Junk b.v., The Hague (in press).Google Scholar

Copyright information

© Dr. W. Junk B.V. Publishers 1976

Authors and Affiliations

  • M. P. Austin
    • 1
  1. 1.Division of Land Use ResearchCSIROCanberraAustralia

Personalised recommendations