Vegetatio

, Volume 127, Issue 1, pp 55–70 | Cite as

Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity

  • Josef F. Stuefer

Abstract

Plant ecologists have spent considerable effort investigating the physiological mechanisms and ecological consequences of clonal growth in plants. One line of research is concerned with the response of clonal plants to environmental heterogeneity. Several concepts and hypotheses have been formulated so far, suggesting that intra-clonal resource translocation, morphological plasticity on different organizational levels (e.g. leaves, ramets, fragments), and other features of clonal plants may represent potentially adaptive traits enabling stoloniferous and rhizomatous species to cope better with habitat patchiness. Although each of these concepts contributes substantially to our understanding of the ecology of clonal species, it is difficult to combine them into a consistent theoretical framework. This apparent lack of conceptual coherence seems partly be caused by an uncritical use of the term ‘habitat heterogeneity’. Researchers have not always acknowledged the fact that ‘heterogeneity’ may refer to a number of fundamentally different aspects of environmental variability (i.e. scale, contrast, predictability, temporal vs. spatial heterogeneity), and that each of these aspects may, on one hand, allow for the evolution of specific plant responses to heterogeneity and, on the other, severely constrain the viability of potentially adaptive traits. Since adaptive responses are operational only in a narrow range of conditions (delimited by external environmental conditions and constraints internal to plants) it seems imperative to clearly define the context and the limits within which concepts regarding clonal plants' responses to heterogeneity are valid. In this paper an attempt is made to review a number of these concepts and to try and identify the necessary conditions for them to be operational. Special attention is paid (1) to different aspects of environmental heterogeneity and how they may affect clonal plants, and (2) to possible constraints (e.g. sectoriality, perception of environmental signals, morphological plasticity) on plant responses to patchiness.

Key words

Clonal growth Constraints Habitat patchiness Morphological plasticity Physiological integration Plant-environment interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addicott J. F., Aho J. M., Antolin M. F., Padilla D. K., Richardson J. S. & Soluk D. A. 1987. Ecological neighborhoods: scaling environmental patterns. Oikos 49: 340–346.Google Scholar
  2. Alpert P & Mooney H. A. 1996. Resource heterogeneity generated by shrubs and topography on coastal sand dunes. Vegetatio 122: 83–93.Google Scholar
  3. Alpert P. 1991. Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology 72: 69–80.Google Scholar
  4. Alpert P. & Mooney H. A. 1986. Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 70: 227–233.Google Scholar
  5. Antonovics J. & Levin D. A. 1980. The ecological and genetic consequences of density-dependent regulation in plants. Ann. Rev. Ecol. Syst. 11: 411–452.Google Scholar
  6. Aphalo P. J. & Ballaré C. L. 1995. On the importance of information-acquiring systems in plant-plant interactions. Funct. Ecol. 9: 5–14.Google Scholar
  7. Baldocchi D. & Collineau S. 1994. The physical nature of solar radiation in heterogeneous canopies: spatial and temporal attributes. Pp. 21–71. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  8. Ballaré C. L. 1994. Light gaps: sensing the light opportunities in highly dynamic canopy environments. Pp. 73–110. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  9. Bertness M. D., Gough L. & Shumway S. W. 1992. Salt tolerance and the distribution of vascular plants in a New England salt marsh. Ecology 73: 1842–1851.Google Scholar
  10. Birch C. P. D. & Hutchings M. J. 1994. Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. J. Ecol. 82: 653–664.Google Scholar
  11. Cain M. L. 1994. Consequences of foraging in clonal plant species. Ecology 75: 933–944.Google Scholar
  12. Caldwell M. M. 1994. Exploiting nutrients in fertile soil microsites. Pp. 325–347. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  13. Caldwell M. M. & Pearcy R. W. (eds) 1994. Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  14. Callaghan T. V. 1976. Growth and population dynamics of Carex bigelowii in an alpine environment. Oikos 27: 402–413.Google Scholar
  15. Callaghan T. V. 1977. Adaptive strategies in the life cycles of South Georgian graminoid species. Pp. 981–1002. In: Llano G. A. (ed.), Adaptations within Antarctic ecosystems. Smithsonian Inst. Washington.Google Scholar
  16. Callaghan T. V. 1988. Physiological integration and demographic implications of modular construction in cold environments. Pp. 111–135. In: Davy A. J., Hutchings M. J. & Watkinson A. R. (eds), Plant population biology. Blackwell Scientific Publications, Oxford.Google Scholar
  17. Callaghan T. V., Carlsson B. Å., Jónsdóttir I. S., Svensson B. M. & Jonasson S. 1992. Clonal plants and environmental change: introduction to the proceedings and summary. Oikos 63: 341–347.Google Scholar
  18. Campbell B. D., Grime J. P. & Mackey J. M. L. 1991. A trade-off between scale and precision in resource foraging. Oecologia 87: 532–538.Google Scholar
  19. Caraco T. & Kelly C. K. 1991. On the adaptive value of physiological integration in clonal plants. Ecology 72: 81–93.Google Scholar
  20. Chapman D. F., Robson M. J. & Snaydon R. W. 1991a. The influence of leaf position and defoliation on the assimilation and translocation of carbon in white clover (Trifolium repens L.). I. Carbon distribution patterns. Ann. Bot. 67: 295–302.Google Scholar
  21. Chapman D. F., Robson M. J. & Snaydon R. W. 1991b. The influence of leaf position and defoliation on the assimilation and translocation of carbon in white clover (Trifolium repens L.). 2. Quantitative carbon movement. Ann. Bot. 67: 303–308.Google Scholar
  22. Chapman D. F., Robson M. J. & Snaydon R. W. 1992. Physiological integration in the perennial herb Trifolium repens L. Oecologia 89: 338–347.Google Scholar
  23. de Kroon, H. 1990. In search of a foraging plant. The clonal growth of Brachypodium pinnatum and Carex flacca. Ph. D. Dissertation, Utrecht University. 107p.Google Scholar
  24. deKroon H. & Hutchings M. J. 1995. Morphological plasticity in clonal plants: the foraging concept reconsidered. J. Ecol. 83: 143–152.Google Scholar
  25. deKroon H., Stuefer J. F., Dong M. & During H. J. 1994. On plastic and non-plastic variation in clonal plant morphology and its ecological significance. Folia Geobot. Phytotax. 29: 123–138.Google Scholar
  26. de Kroon, H., van der Zalm, E., van Rheenen, J. W. A., van Dijk, A. & Kreulen, R. (submitted). The interaction between water and nutrient translocation in a rhizomatous sedge (Carex flacca).Google Scholar
  27. deKroon H. & vanGroenendaal J. 1990. Regulation and function of clonal growth in plants: an evaluation. Pp. 177–186. In: vanGroenendael J. & deKroon H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.Google Scholar
  28. Diaz Barradas M. C., During H. J. & Terlou M. 1992. The structure of bryophyte communities in the dunes of Meijendel, Netherlands. Pp. 313–323. In: Carter R. W. G., Curtis T. G. F. & Sheehy-Skeffington M. J. (eds), Coastal dunes. Geomorphology, ecology and management for conservation. Balkema, Rotterdam.Google Scholar
  29. Dong M. 1993. Morphological plasticity of the clonal herb Lamiastrum galeobdolon (L.) Ehrend. & Polatschek in response to partial shading. New Phytol. 124: 291–300.Google Scholar
  30. Dong, M. 1994. Foraging through morphological plasticity in clonal herbs. Ph. D. Dissertation, Utrecht University. 96 p.Google Scholar
  31. Dong M. 1995. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia 101: 282–288.Google Scholar
  32. Dong M. & deKroon H. 1994. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass forming stolons and rhizomes. Oikos 70: 99–106.Google Scholar
  33. Dormer K. J. 1972. Shoot organization in vascular plants. Chapman & Hall. London.Google Scholar
  34. Drew M. C. & Saker L. R. 1975. Nutrient supply and the growth of the seminal root system in barley. II. Localized, compensatory increase in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exper. Bot. 26: 79–90.Google Scholar
  35. During H. J. & Lloret F. 1996. Permanent grid studies in bryophyte communities. 1. Pattern and dynamics of individual species. J. Hattori Bot. Lab. 79: 1–41.Google Scholar
  36. Eriksson O. 1986. Mobility and space capture in the stoloniferous plant Potentilla anserina. Oikos 46: 82–87.Google Scholar
  37. Eriksson O. & Jerling L. 1990. Hierarchical selection and risk spreading in clonal plants. Pp. 79–94. In: vanGroenendael J. & deKroon H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.Google Scholar
  38. Evans J. P. 1988. Nitrogen translocation in a clonal dune perennial, Hydrocotyle bonariensis. Oecologia 77: 64–68.Google Scholar
  39. Evans J. P. 1991. The effect of resource integration on fitness related traits in a clonal dune perennial, Hydrocotyle bonariensis. Oecologia 86: 268–275.Google Scholar
  40. Evans J. P. 1992. The effect of local resource availability and clonal integration on ramet functional morphology in Hydrocotyle bonariensis. Oecologia 89: 265–276.Google Scholar
  41. Evans J. P. & Whitney S. 1992. Clonal integration across a salt gradient by a non-halophyte, Hydrocotyle bonariensis (Apiaceae). Amer. J. Bot. 79: 1344–1347.Google Scholar
  42. Fitter A. H. 1994. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. Pp. 305–323. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  43. Fliervoet L. M. & Werger M. J. A. 1984. Canopy structure and microclimate of two wet grassland communities. New Phytol. 96: 115–130.Google Scholar
  44. Fowler N. 1988. The effects of environmental heterogeneity in space and time on the regulation of populations and communities. Pp. 249–269. In: Davy A. J., Hutchings M. J. & Watkinson A. R. (eds), Plant population ecology. Blackwell Scientific Publications, Oxford.Google Scholar
  45. Friedman D. & Alpert P. 1991. Reciprocal transport between ramets increases growth of Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich. Oecologia 86: 76–80.Google Scholar
  46. Gifford E. M. & Foster A. S. 1989. Morphology and evolution of vascular plants. Freeman & Co., New York.Google Scholar
  47. Grime J. P. 1979. Plant strategies and vegetation processes. Wiley & Sons, Chichester.Google Scholar
  48. Grime J. P., Crick J. C. & Rincon J. E. 1986. The ecological significance of plasticity. Pp. 4–29. In: Jennings D. H. & Trewavas A. J. (eds), Plasticity in plants. Cambridge University Press, Cambridge.Google Scholar
  49. Gross K. L., Pregitzer K. S. & Burton A. J. 1995. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 83: 357–367.Google Scholar
  50. Harper J. L. 1985. Modules, branches, and the capture of resources. Pp. 1–33. In: Jackson J. B. C., Buss L. W. & Cook R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.Google Scholar
  51. Hartnett D. C. & Bazzaz F. A. 1983. Physiological integration among intraclonal ramets in Solidago canadensis. Ecology 64: 779–788.Google Scholar
  52. Herben T., During H. J. & Krahulec F. 1995. Spatiotemporal dynamics in mountain grasslands; species autocorrelations in space and time. Folia Geobot. Phytotax. 30: 185–196.Google Scholar
  53. Herben T., Hara T., Marshall C. & Soukupová L. 1994. Plant clonality: biology and diversity. Folia Geobot. Phytotax. 29: 113–122.Google Scholar
  54. Hirose T. & Werger M. J. A. 1995. Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76: 466–474.Google Scholar
  55. Huber, H. 1996. Plasticity of internodes and petioles in prostrate and erect Potentilla species. Funct. Ecol. 10, in press.Google Scholar
  56. Hutchings M. J. & deKroon H. 1994. Foraging in plants: the role of morphological plasticity in resource acquisition. Adv. Ecol. Res. 25: 159–238.Google Scholar
  57. Hutchings M. J. & Slade A. J. 1988. Morphological plasticity, foraging and integration in clonal perennial herbs. Pp. 83–109. In: Davy A. J., Hutchings M. J. & Watkinson A. R. (eds), Plant population biology. Blackwell Scientific Publications, Oxford.Google Scholar
  58. Jackson J. B. C., Buss L. W. & Cook R. E. (eds) 1985. Population biology and evolution of clonal organisms. Yale University Press, New Haven.Google Scholar
  59. Jackson R. B., Manwaring J. H. & Caldwell M. M. 1990. Rapid physiological adjustment of roots to localized soil enrichment. Nature 344: 58–60.Google Scholar
  60. Jones M. 1985. Modular demography and form in silver birch. Pp. 223–237. In: White J. (ed), Studies on plant demography. A Festschrift for John L. Harper. Academic Press, London.Google Scholar
  61. Jones M. & Harper J. L. 1987a. The influence of neighbours on the growth of trees. I. The demography of buds in Betula pendula. Proc. Roy. Soc. Lond., Ser. B, 232: 1–18.Google Scholar
  62. Jones M. & Harper J. L. 1987a. The influence of neighbours on the growth of trees. II. The fate of buds on long and short shoots in Betula pendula. Proc. Roy. Soc. Lond., Series B, 232: 19–33.Google Scholar
  63. Jónsdóttir, I. S. 1989. The population dynamics, intraclonal physiology and grazing tolerance of Carex bigelowii. PhD Dissertation. Lund University, 86p.Google Scholar
  64. Jónsdóttir I. S. & Callaghan T. V. 1988. Interrelationships between different generations of interconnected tillers of Carex bigelowii. Oikos 52: 120–128.Google Scholar
  65. Jónsdóttir I. S. & Callaghan T. V. 1989. Localized defoliation stress and the movement of 14C-photoassimilates between tillers of Carex bigelowii. Oikos 54: 211–219.Google Scholar
  66. Jónsdóttir I. S. & Callaghan T. V. 1990. Intraclonal translocation of ammonium and nitrate in Carex bigelowii using 15N and nitrate reductase assays. New Phytol. 114: 419–428.Google Scholar
  67. Kelly V. R. & Canham C. D. 1992. Resource heterogeneity in oldfields. J. Veg. Sci. 3: 545–552.Google Scholar
  68. Kemball W. D. & Marshall C. 1995. Clonal integration between parent and branch stolon in white clover: a developmental study. New Phytol. 129: 513–521.Google Scholar
  69. Kolasa J. & Rollo C. D. 1991. The heterogeneity of heterogeneity: a glossary. Pp. 1–23. In: Kolasa J. & Pickett S. T. A. (eds), Ecological heterogeneity. Springer, New York.Google Scholar
  70. Kotliar N. B. & Wiens J. A. 1990. Multiple scale of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59: 253–260.Google Scholar
  71. Lau R. R. & Young D. R. 1988. Influence of physiological integration on survivorship and water relations in a clonal herb. Ecology 69: 215–219.Google Scholar
  72. Lee J. A. & Stewart G. R. 1978. Ecological aspects of nitrogen assimilation. Adv. Bot. Res. 6: 1–43.Google Scholar
  73. Levin S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.Google Scholar
  74. Li H. & Reynolds J. F. 1994. A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75: 2446–2455.Google Scholar
  75. Li H. & Reynolds J. F. 1995. On definition and quantification of heterogeneity. Oikos 73: 280–284.Google Scholar
  76. Miller R. E., VerHoef J. M. & Fowler N. L. 1995. Spatial heterogeneity in eight central Texas grasslands. J. Ecol. 83: 919–928.Google Scholar
  77. Marshall C. 1990. Source-sink relations of interconnected ramets. Pp. 23–41. In: vanGroenendael J. & deKroon H. (eds), Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.Google Scholar
  78. Novoplansky A., Cohen D. & Sachs T. 1990. How Portulaca seedlings avoid their neighbours. Oecologia 82: 490–493.Google Scholar
  79. Oborny B. 1994a. Growth rules in clonal plants and environmental predictability — a simulation study. J. Ecol. 82: 341–351.Google Scholar
  80. Oborny B. 1994b. Spacer length in clonal plants and the efficiency of resource capture in heterogeneous environments: a Monte Carlo simulation. Folia Geobot. & Phytotax. 29: 139–158.Google Scholar
  81. Oborny B. & Podani J. (eds) 1995. Clonality in plant communities. Opulus Press, Uppsala.Google Scholar
  82. Pate J. S. 1980. Transport and partitioning of nitrogenous solutes. Ann. Rev. Pl. Phys. 31: 313–340.Google Scholar
  83. Pate J. S. 1983. Patterns of nitrogen metabolism in higher plants and their ecological significance. Pp. 225–255. In: Lee J. A., McNeill S. & Rorison I. H. (eds), Nitrogen as an ecological factor. Blackwell Scientific Publications, Oxford.Google Scholar
  84. Pearcy R. W. & Sims D. A. 1994. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. Pp. 145–174. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  85. Pearcy R. W., Chazdon R. L., Gross L. J. & Mott K. A. 1994. Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. Pp. 175–208. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  86. Peoples M. B. & Gifford R. M. 1990. Long-distance transport of nitrogen and carbon from sources to sinks in higher plants. Pp. 434–447. In: Dennis D. T. & Turpin D. H. (eds), Plant physiology, biochemistry and molecular biology. Longman, Harlow.Google Scholar
  87. Pitelka L. F. & Ashmun J. W. 1985. Physiology and integration of ramets in clonal plants. Pp. 399–435. In: Jackson J. B. C., Buss L. W. & Cook R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.Google Scholar
  88. Price E. A. C. & Hutchings M. J. 1992a. The causes and developmental effects of integration and independence between different parts of Glechoma hederacea clones. Oikos 63: 376–386.Google Scholar
  89. Price E. A. C. & Hutchings M. J. 1992b. Studies of growth in the clonal herb Glechoma hederacea. II. The effects of selective defoliation. J. Ecol. 80: 39–47.Google Scholar
  90. Price E. A. C., Marshall C. & Hutchings M. J. 1992. Studies of growth in the clonal herb Glechoma hederacea. I. Patterns of physiological integration. J. Ecol. 80: 25–38.Google Scholar
  91. Robertson G. P. & Gross K. L. 1994. Assessing the heterogeneity of belowground resources: quantifying pattern and scale. Pp. 237–253. In: Caldwell M. M. & Pearcy R. W. (eds), Exploitation of environmental heterogeneity by plants. Academic Press, London.Google Scholar
  92. Robinson D. 1994. The response of plants to non-uniform supplies of nutrients. New Phytol. 127: 635–674.Google Scholar
  93. Salzman A. G. 1985. Habitat selection in a clonal plant. Science 228: 603–604.Google Scholar
  94. Salzman A. G. & Parker M. A. 1985. Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia 65: 273–277.Google Scholar
  95. Scheiner S. M. 1993. Genetics and evolution of phenotypic plasticity. Ann. Rev. Ecol. Syst. 24: 35–68.Google Scholar
  96. Schulze E.-D. & Hall A. E. 1981. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. Encycl. Pl. Phys., New Series, 12B: 181–230.Google Scholar
  97. Shorrocks B. & Swingland R. (eds) 1990. Living in a patchy environment. Oxford University Press, Oxford.Google Scholar
  98. Shumway S. W. 1995. Physiological integration among clonal ramets during invasion of disturbance patches in a New England salt marsh. Ann. Bot. 76: 225–233.Google Scholar
  99. Silvertown J. & Smith B. 1988. Gaps in the canopy: the missing dimension in vegetation dynamics. Vegetatio 77: 57–60.Google Scholar
  100. Silvertown J. & Smith B. 1989. Mapping the microenvironment for seed germination in the field. Ann. Bot. 63: 163–167.Google Scholar
  101. Silvertown J., Prince S. D. & Smith B. 1988. A field-portable instrument for mapping the micro environment within grass canopies. Funct. Ecol. 2: 263–268.Google Scholar
  102. Slade A. J. & Hutchings M. J. 1987a. An analysis of the costs and benefits of physiological integration between ramets in the clonal perennial herb Glechoma hederacea. Oecologia 73: 425–431.Google Scholar
  103. Slade A. J. & Hutchings M. J. 1987b. The effect of nutrient availability on foraging in the clonal herb Glechoma hederacea. J. Ecol. 75: 95–112.Google Scholar
  104. Solangaarachchi S. M. & Harper J. L. 1989. The growth and asymmetry of neighbouring plants of white clover (Trifolium repens L.). Oecologia 78: 208–213.Google Scholar
  105. Steeves T. A. & Sussex I. M. 1989. Patterns in plant development. 2nd edition. Cambridge University Press, Cambridge.Google Scholar
  106. Strasburger E. 1991. Lehrbuch der Botanik. 33rd edition. G. Fischer, Stuttgart.Google Scholar
  107. Stuefer J. F. 1996. Separating the effects of assimilate and water integration in clonal fragments by the use of steam-girdling. Abstr. Bot. 19: 75–81.Google Scholar
  108. Stuefer, J. F., de Kroon, H. & During, H. J. 1996. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Funct. Ecol. 10, in press.Google Scholar
  109. Stuefer J. F., During H. J. & deKroon H. 1994. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J. Ecol. 82: 511–518.Google Scholar
  110. Stuefer J. F. & Hutchings M. J. 1994. Environmental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia 100: 302–308.Google Scholar
  111. Sutherland W. J. & Stillman R. A. 1988. The foraging tactics of plants. Oikos 52: 239–244.Google Scholar
  112. Tuomi J. & Vuorisalo T. 1989a. Hierarchical selection in modular organisms. Tr. Ecol. Evol. 4: 209–213.Google Scholar
  113. Tuomi J. & Vuorisalo T. 1989b. What are the units of selection in modular organisms? Oikos 54: 227–233.Google Scholar
  114. Upton G. J. G. & Fingleton B. 1985. Spatial data analysis by example. I. Point pattern and quantitative data. Wiley & Sons, Chichester.Google Scholar
  115. Upton G. J. G. & Fingleton B. 1989. Spatial data analysis by example. II. Categorical and directional data. Wiley & Sons, Chichester.Google Scholar
  116. vanGroenendael J. & deKroon H. (eds) 1990. Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.Google Scholar
  117. Waite S. 1994. Field evidence of plastic growth responses to habitat heterogeneity in the clonal herb Ranunculus repens. Ecol. Res. 9: 311–316.Google Scholar
  118. Watson M. A. 1984. Developmental constraints: effect on population growth and patterns of resource allocation in a clonal plant. Amer. Nat. 123: 411–426.Google Scholar
  119. Watson M. A. & Casper B. B. 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Ann. Rev. Ecol. Syst. 15: 233–258.Google Scholar
  120. Wiens J. A. 1976. Population responses to patchy environments. Ann. Rev. Ecol. Syst. 7: 81–120.Google Scholar
  121. Wiens J. A. 1989. Spatial scaling in ecology. Funct. Ecol. 3: 385–397.Google Scholar
  122. Wiens J. A. 1990. On the use of ‘grain’ and ‘grain size’ in ecology. Funct. Ecol. 4: 720.Google Scholar
  123. Wijesinghe D. K. & Handel S. N. 1994. Advantages of clonal growth in heterogeneous habitats: an experiment with Potentilla simplex. J. Ecol. 82: 495–502.Google Scholar
  124. Young D. R. & Smith W. K. 1979. Influence of sunflecks on the temperature and water relations of two subalpine understorey congeners. Oecologia 43: 195–205.Google Scholar
  125. Young D. R. & Smith W. K. 1980. Influence of sunlight on photosynthesis, water relations, and leaf structure in the understorey species Arnica cordifolia. Ecology 61: 1380–1390.Google Scholar
  126. Zimmermann M. H. & Tomlinson P. B. 1972. The vascular construction of monocotyledonous stems. Bot. Gaz. 133: 141–155.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Josef F. Stuefer
    • 1
  1. 1.Department of Plant Ecology & Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations