Genetica

, Volume 97, Issue 2, pp 225–233 | Cite as

Multiple-chromosome sex systems in the darkling beetles Blaps gigas and Blaps gibba (Coleoptera, Tenebrionidae)

  • R. Vitturi
  • E. Catalano
  • I. Sparacio
  • M. S. Colomba
  • A. Morello
Article

Abstract

We have studied mitotic and meiotic chromosomes in the males of two species of Blaps: B. gigas and B. gibba. Karyological characteristics such as the occurrence of a multivalent configuration at diakinesis and two types of metaphase-II spreads support the notion that multiple-chromosome sex systems involving five chromosomes in B. gigas and eight chromosomes in B. gibba have developed in these species. Results obtained by means of silver staining and C-banding techniques suggest that the complex sex systems occurring in B. gigas and B. gibba may have originated from exchanges of terminal ribosomal genes among the Y chromosome and some autosomes.

Key words

karyology banded chromosomes Coleoptera darkling beetles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carbone, P., R. Vitturi, E. Catalano & M. Macaluso, 1987. Chromosomes sex determination and Y-autosome fusion in Blennius tentacularis Brünnich 1965 (Pisces, Blennidae). J. Fish Biol. 31: 597–602.Google Scholar
  2. Cardoso, H. & A. Dutra, 1979. The Neo-X Neo-Y sex pair in Acrididae, its structure and association. Chromosoma (Berl.) 70: 325–336.Google Scholar
  3. Cardoso, H., F.A. Saez & N. Brum-Zorrilla, 1974. Location, structure and behaviour of C-haterochromatin during meiosis in Dichroplus silveiraguidoi (Acrididae, Orthoptera), Chromosoma (Berl.) 48: 51–64.Google Scholar
  4. De Almeyda Toledo, L.F., H. Foresti & S.De Almeyda Toledo Filho, 1984. Complex sex chromosome system in Eigenmannia sp. (Pisces, Gymnotiformes), Genetica 64: 165–179.Google Scholar
  5. Diaz, M.O. & F.A. Saez, 1968. DNA synthesis in the neo-X neo-Y sex determination system of Dichroplus bergi (Orthoptera, Acrididae). Chromosoma (Berl.) 24: 10–16.Google Scholar
  6. Goldoni, D. & F. Fontana, 1991. Localization of silver positive structures in mitotic and meiotic chromosomes of Kalotermes flavicollis (Fabr.) (Isoptera Kalotermitidae), Ethol. Ecol. & Evol., Special Issue 1: 25–27.Google Scholar
  7. Gorman, G.C., L. Atkins & T. Hilzinger, 1967. New karyotypic data on 15 genera of lizards in the family Iguanidae with a discussion of taxonomic and cytological implications. Cytogenetics 6: 286–299.Google Scholar
  8. Guenin, H.A., 1949. L'evolution de lar formule chromosomique dans le genre Blaps (Coleopt. Tenebr.) Rev. Suisse Zool. 56: 336.Google Scholar
  9. Haaf, T. & M. Schmid, 1984. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenops var. melanistica (Poecillidae, Cyprinodontiformes). Chromosoma (Berl.) 89: 37–41.Google Scholar
  10. Hernandez-Verdun, D., 1991. The nucleolus today. J. Cell Sci. 99: 465–471.Google Scholar
  11. Hernandez-Verdun, D., P. Roussel & T. Gautier, 1993. Nucleolar proteins during mitosis. Chromosomes Today. A.T. Summer and A.C. Chandley Eds., London, Chapman & Hall, pp. 79–90.Google Scholar
  12. Howell, W.M. & D.A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer; a 1-step method. Experientia: 1014–1015.Google Scholar
  13. John, B. & K.R. Lewis, 1960. Nucleolar controlled segregation of the sex chromosomes in beetles. Heredity (Lond.) 15: 431–439.Google Scholar
  14. John, B., 1976. Myths and mechanisms of melosis. Chromosoma (Berl.) 54: 295–325.Google Scholar
  15. Jones, K.W., 1989. Inactivation phenomena in the evolution and functions of sex chromosomes. In: Evolutionary mechanisms in sex determination (S.S. Wachtel, ed.) Fla: CRC Press, Boca Raton, pp 69–90.Google Scholar
  16. Kasahara, S., Y. Yonenaga-Yassuda & R.A. Schincariol, 1983, Chromosome mechanisms of sex determination, G-and C-band patterns of nucleolus organizer regions in Tropidurus torquatus (Sauria, Iguanidae). Genetica 60: 151–156.Google Scholar
  17. Levan, A., K. Fredga & A.A. Sandberg, 1964. Nomenclature for centromeric position of chromosomes. Hereditas 52: 201–220.Google Scholar
  18. Lewis, K.R. & B. John, 1957. The organization and evolution of the sex multiple system in Blaps mucronata, Chromosome 9: 69–80.Google Scholar
  19. Mckee, B.D., L. Habera & J.L. Verna, 1992. Evidence that the intergenic spacers of Drosophila melanogaster rDNA genes function as X-Y pairing sites in male meiosis and a general model for achiasmatic psiring. Genetics 132: 529–544.Google Scholar
  20. Morescalchi, A., 1992. Chromosomes, sex determination and environment in teleosteans. In: Sex, origin and evolution, 1st edn. (R. Dallal, ed.) Modena, Mucchi, pp. 137–149.Google Scholar
  21. Moresealchi, A., J.C. Hureau, E. Olmo, C. Ozouf-Costaz, E. Pissno & R. Stanyon, 1992. A multiple sex-chromosome system in antarctic ice-fishes. Polar Biol. 11: 655–661.Google Scholar
  22. Nonidez, J.F., 1915. Estudios sobre las células sexuales. I. Los cromosomas goniales y las mitosis de maturation en Biaps lusitanica y B. waltli. Mem. R. Soc. Esp. His. Nat. 10: 149–150.Google Scholar
  23. Ohao, S., 1967. Sex chromosomes and sex-linked genes. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  24. Olmo, E., G. Odierna & T. Capriglione, 1987, Evolution of sex chromosomes in lacertid lizards. Chromosoma (Beri.) 96: 33–38.Google Scholar
  25. Pezold, F., 1984. Evidence for multiple sex chromosomes in the freshwater goby Gobionellus shufeldti (Pisces: Gobiidas), Copeia 1: 235–238.Google Scholar
  26. Porta, A., 1934. Fauna coleopterorum italica. Vol. IV, Heteromora-Phytophags. Piacenza, 415 pp.Google Scholar
  27. Singh, L., I.F. Purdom & K.W. Jones, 1976. Satellite DNA and evolution of sex chromosomes. Chromosoma (Berl.) 59: 43–62.Google Scholar
  28. Singh, L., I.F. Purdom & K.W. Jones, 1980. Sex chromosomes associated statellite DNA: evolution and conservation. Chromosoma (Berl.) 79: 137–157.Google Scholar
  29. Sola, L., P.J. Monaco & E.M. Rasch, 1990. Cytogenties of bisexual/unisexual species of Poecilia. 1. C-bands, Ag-NOR polymerphism, and sex chromosomes in three populations of Poecilia latipinna. Cytogenet. Cell Genet. 53: 148–154.Google Scholar
  30. Solari, A.J. & T. Ashley, 1977. Ultrastructure and behaviour of the achiasmatic telosynaptic XY pair of the sand rat Psammomys obesus. Chromosoma (Berl.) 62: 319–336.Google Scholar
  31. Summer, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Expl. Cell Res. 75: 304–306.Google Scholar
  32. Vitturi, R., 1992. Conventionally stained chromosomes, constitutive heterochromatin and nucleolar organizer regions in Milax nigricans (Gastropoda, Pulmonata). Chromatin 1: 147–155.Google Scholar
  33. Vitturi, R., E. Catalano, D. Colombera, A.L. Avils & A. Fuca, 1993. Multiple sex chromosome system and other karyological characterizations of Pterotrachea hyppocampus (Mollusca: Mesogastropoda). Mar. Biol. 115: 581–585.Google Scholar
  34. Wahrman, J., R. Nezer & O. Freund, 1973. Multiple sex chromosome mechanism with ‘segregation bodies’. Chromosomes Today 4: 434.Google Scholar
  35. White, M.J.D., 1973. Animal cytology and evolution, 3rd ed. London: Cambridge Univ. Press.Google Scholar
  36. Wright, J.W., 1973. Evolution of the X1 X2 Y sex chromosome mechanism in the scincid lizard Seincella laterale (Say) Chromosoma (Berl.) 43: 101–108.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • R. Vitturi
    • 1
  • E. Catalano
    • 1
  • I. Sparacio
    • 1
  • M. S. Colomba
    • 1
  • A. Morello
    • 1
  1. 1.Institute of ZoologyUniversity of PalermoPalermoItaly

Personalised recommendations