Genetica

, Volume 97, Issue 2, pp 205–210

Abnormal development of the locomotor activity in yellow larvae of Drosophila: a cuticular defect?

  • Nibaldo C. Inestrosa
  • Claudio E. Sunkel
  • Jorge Arriagada
  • Jorge Garrido
  • Raul Godoy-Herrera
Article
  • 74 Downloads

Abstract

The yellow (y) mutation of Drosophila melanogaster affects the development of behavior and morphology. We have analyzed some behavioral and morphological parameters during the development of y mutants. Wild-type third instar larvae move in straighter paths than larvae of the same age homozygous for the y mutation. At 96 h of age, the tracks of y larvae have 10 times as many loops as tracks of wild-type larvae, and at 120 h of age, y larvae show bending behavior about 2.5 times more frequently than do wild-type. Consequently, they do not disperse as much as wild-type larvae. Concomitant with the behavioral changes, the larvae present a defect in the morphology of large chaetae in the larval denticle belts, particularly of 2nd and 3rd instars, both with light and scanning electron microscopes. These results suggest that a cuticular defect is probably involved in the abnormal locomotor activity observed in y larvae of Drosophila melanogaster.

Key words

Drosophila melanogaster cuticular structures larvae yellow gene locomotor behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastock, M., 1956, A gene mutation that changes a behavior pattern. Evolution 10: 421–439.Google Scholar
  2. Beissmann, H., 1985. Molecular analysis of the Yellow gene (y) region of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 82: 7369–7373.Google Scholar
  3. Brehme, K.S., 1941. The effect of adult body color mutations upon the larva of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 27: 254–261.Google Scholar
  4. Burdick, A.B., 1954. New medium of reproductive quality stable at room temperature. Drosophila Infor. Serv. 28: 170.Google Scholar
  5. Burnet, B. & K. Connolly, 1974, Activity and sexual behavior in Drosophila melanogaster, pp. 201–258 in The Genetics of Behavior, edited by J.H.F.Van Abeelen, Elsevier, Amsterdam.Google Scholar
  6. Burnet, B., K. Connolly & B. Harrison, 1973. Phenocopies of pigmentary and behavioral effects of Yellow mutant in Drosophila induced by α-dimethyltyrosine. Science 181: 1059–1060.Google Scholar
  7. Burnet, B. & R. Wilson, 1980. Pattern mosaicism for behavior controlled by the Yellow locus in Drosophila melanogaster. Genet. Res. 36: 235–247.Google Scholar
  8. Cambiazo, V. & N.C. Inestrosa, 1990. Proteoglycan production in Drosophila egg development: Effect of β-D-xyloside on proteoglycan synthesis and larval motility. Comp. Biochem. & Physiol. 97B: 307–314.Google Scholar
  9. Campusano, L., L. Carramolino, C.V. Cabrera, M. Ruiz-Gomez, R. Villares, A. Boronat & J. Modolell, 1985. Molecular genetics of the achaete-scute gene complex of Drosophila melanogaster. Cell 40: 327–338.Google Scholar
  10. Chia, W., G. Howes, M. Martin, Y.B. Meng, M. Mosses & S. Tsuboto, 1986a. Molecular analysis of the Yellow locus of Drosophila. EMBO J 5: 3597–3605.Google Scholar
  11. Chia, W., G. Howes, M. Martin & J.B. Meng, 1986b. Molecular analysis of Yellow. Drosophila Meeting, England (Abstr.)Google Scholar
  12. Garcia-Bellido, A., 1979. Genetic analysis of the achaete-scute system of Drosophila melanogaster. Genetics 91: 491–505.Google Scholar
  13. Garcia-Bellido, A. & P. Santamaria, 1978. Developmental analysis of the achete-scute system of Drosophila melanogaster. Geneties 88: 469–486.Google Scholar
  14. Godoy-Herrera, R., B. Burnet, K. Connolly & J. Gogharty, 1984. The development of locomotor activity in Drosophila melanogaster larvae. Heredity 52: 63–75.Google Scholar
  15. Green, Ch., B. Burnet & K.J. Connolly, 1983. Organizations and patterns of inter- and intraspecifie variation in the behavior of Drosophila larvae. Anim. Behav. 30: 282–291.Google Scholar
  16. Inestrosa, N.C., C. Sunkel & J.R. Arriagada, 1987. The sensory projection of Drosophila mutants which show abnormal wing formation or flying behavior. Brain Res. 416: 248–256.Google Scholar
  17. Inestrosa, N.C., H.B. Nader, J. Garride, L.O. Sampaio, E. Brandan & C.P. Dietrich, 1987. Glycosaminoglycan composition of cholinergic extracellular matrix: Chemical characteristies of the heparan sulfate chains. J. Neurosci. Res. 17: 256–264.Google Scholar
  18. Lindsley, D.L. & E.H. Grell, 1968. Genetic variations of Drosophila melanogaster. Carnegie Institute of Washington Publication No 627.Google Scholar
  19. Lohs-Schardin, M., C. Cremer & C. Nusslein-Volhard, 1979. A fate map of the larval epidermis of Drosophila melanogaster: localized defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev. Biol. 73: 239–255.Google Scholar
  20. Nash, W.G., 1976. Patterns of pigmentation and color states regulated by the y locus in Drosophila melanogaster. Dev. Biol. 48: 336–343.Google Scholar
  21. Nash, W.G. & R.J. Yarkin, 1974. Genetic regulation and pattern formation: A study of Yellow locus in Drosophila melanogaster. Genet. Res. 24: 19–26.Google Scholar
  22. Pereira, H.S. & M. B. Sokolowski, 1993. Mutations in the larval foraging gene affect adult locomotory behavior after feeding in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 90: 5044–5046.Google Scholar
  23. van der Meer, J.M., 1977. Optically clean and permanent whole mount preparations for phase-contrast microscopy of cuticular structures of insect larvae. Drosophila Infor. Serv. 52: 160.Google Scholar
  24. Wilson, R., B. Burnet, L. Eastwood & K. Connolly, 1976. Behavioral pleiotropy of the yellow gene in Drosophila melanogaster. Genet. Res. 28: 75–88.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Nibaldo C. Inestrosa
    • 1
  • Claudio E. Sunkel
    • 2
  • Jorge Arriagada
    • 1
  • Jorge Garrido
    • 1
  • Raul Godoy-Herrera
    • 3
  1. 1.Departamento de Biología Celular y Molecular, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChine
  2. 2.Molecular Gnetics LaboratoryUniversity of OportoPortoPortugal
  3. 3.Departamento de Biología Celular y Genética, Facultad de MedicinaUniversidad de ChileSantiagoChile
  4. 4.Molecular Neurobiology UnitP. Catholic University of ChileSantiagoChile

Personalised recommendations