Advertisement

Photosynthesis Research

, Volume 6, Issue 4, pp 295–316 | Cite as

Primary photochemistry in photosystem-I

  • A. W. Rutherford
  • P. Heathcote
Minireview

Abstract

In this review, the main research developments that have led to the current simplified picture of photosystem I are presented. This is followed by a discussion of some conflicting reports and unresolved questions in the literature. The following points are made: (1) the evidence is contradictory on whether P700, the primary donor, is a monomer or dimer of chlorophyll although at this time the balacnce of the evidence points towards a monomeric structure for P700 when in the triplet state; (2) there is little evidence that the iron sulfur centers FA and FB act in series as tertiary acceptors and it is as likely that they act in parallel under physiological conditions; (3) a role for FX, probably another iron sulfur centrer, as an obligatory electron carrier in forward electron transfer has not been proven. Some evidence indicates that its reduction could represent a pathway different to that involving FA and FB; (4) the decay of the acceptor ‘A2’ as defined by optical spectroscopy corresponds with 700+ % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaadaqdaaqaaiaadIfaaaaabeaaaaa!37D1!\[F_{\overline X } \] recombination under some circumstances but under other conditions it probably corresponds with P700+ A1 recombination; (5) P700+ A1 recombination as originally observed by optical spectroscopy is probably due to the decay of the P700 triplet state; (6) the acceptor A1 as defined by EPR may be a special semiquinone molecule; (7) A0 is probably a chlorophyll a molecule which acts as the primary acceptor. Recombination of P700+ A0 gives rise to the P700 triplet state.

A working model for electron transfer in photosystem I is presented, its general features are discussed and comparisons with other photosystems are made.

Keywords

Chlorophyll Recombination Electron Transfer Triplet State Optical Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aasa R, Bergström J and Vänngard T (1981) Biochim Biophys Acta 637, 118–123Google Scholar
  2. 2.
    Arnon DI, Tsujimoto HY and Tang GMS (1981) Proc Natl Acad Sci USA 78, 2942–2946Google Scholar
  3. 3.
    Baker RA and Weaver EC (1973) Photochem Photobiol 18, 237–241Google Scholar
  4. 4.
    Baltimore BG and Malkin R (1980) Photochem Photobiol 31, 485–490Google Scholar
  5. 5.
    Bearden AJ and Malkin R (1972) Biochem Biophys Res Commun 46, 1299–1305Google Scholar
  6. 6.
    Beinert H, Kok B and Hoch G (1962) Biochem Biophys Res Commun 7, 209–212Google Scholar
  7. 7.
    Bolton JR (1978) In ‘The Photosynthetic Bacteria’ (Clayton RK and Sistrom WR eds.) Plenum Press, New York, pp. 419–429Google Scholar
  8. 8.
    Bonnerjea J (1983) PhD Thesis, University of LondonGoogle Scholar
  9. 9.
    Bonnerjea J and Evans MCW (1982) FEBS Lett 148, 313–316Google Scholar
  10. 10.
    Bonnerjea J and Evans MCW (1984) Biochim Biophys Acta 767, 153–159Google Scholar
  11. 11.
    Cammack R and Evans MCW (1975) Biochem Biophys Res Commun 67, 544–549Google Scholar
  12. 12.
    Cammack R, Ryan MD and Stewart AC (1979) FEBS Lett 107, 422–426Google Scholar
  13. 13.
    Chamarovsky SK and Cammack R (1982) Biochim Biophys Acta 679, 146–155Google Scholar
  14. 14.
    Chamarovsky SK and Cammack R (1982) Photobiochem Photobiophys 4, 195–200Google Scholar
  15. 15.
    Commoner B, Heise JJ and Townsend J (1956) Proc Natl Acad Sci USA, 42, 710–718Google Scholar
  16. 16.
    Cramer WA and Crofts AR (1982) In Photosynthesis I ‘Energy Conversion by Plants and Bacteria’ (Govindjee ed) Academic Press, New York, pp. 387–467Google Scholar
  17. 17.
    Crowder MS and Bearden AJ (1983) Biochim Biophys Acta 722, 23–35Google Scholar
  18. 18.
    Demeter S and Ke B (1977) Biochim Biophys Acta 462, 770–774Google Scholar
  19. 19.
    Den Blanken HJ and Hoff AJ (1983) Biochim Biophys Acta 724, 52–61Google Scholar
  20. 20.
    Dismukes GC, McGuire A, Blakenship R and Sauer K (1978) Biophys J 21, 239–256Google Scholar
  21. 21.
    Dornemann D and Senger H (1981) FEBS Lett 126, 323–327Google Scholar
  22. 22.
    Dutton PL, Leigh JS and Seibert M (1971) Biochem Biophys Res Commun 40, 406–413Google Scholar
  23. 23.
    Evans EH, Cammack R and Evans MCW (1976) Biochem Biophys Res Commun 68, 1212–1218Google Scholar
  24. 24.
    Evans EH, Dickson DPE, Johnson CE, Rush JD and Evans MCW (1981) Eur J Biochem 118, 81–84Google Scholar
  25. 25.
    Evans MCW and Cammack R (1975) Biochem Biophys Res Commun 63, 187–193Google Scholar
  26. 26.
    Evans MCW and Heathcote P (1980) Biochim Biophys Acta 590, 89–96Google Scholar
  27. 27.
    Evans MCW, Telfer A and Lord AV (1972) Biochim Biophys Acta 267, 530–537Google Scholar
  28. 28.
    Evans MCW, Reeves SG and Cammack R (1974) FEBS Lett 49, 111–114Google Scholar
  29. 29.
    Evans MCW, Sihra CK, Bolton JR and Cammack R (1975) Nature 259, 668–670Google Scholar
  30. 30.
    Evans MCW, Sihra CK and Cammack R. (1976) Biochem J 158, 71–77Google Scholar
  31. 31.
    Evans MCW, Sihra CK and Slabas AR (1977) Biochem J 162, 75–85Google Scholar
  32. 32.
    Fajer J, Davis MS, Forman A, Klimov VV, Dolan E and Ke B (1980) J Am Chem Soc 102, 7143–7145Google Scholar
  33. 33.
    Fenton JM, Pellin MJ, Govindjee and Kaufman KJ (1979) FEBS Lett 100, 1–4Google Scholar
  34. 34.
    Frank HA, McLean MB and Sauer K (1979) Proc. Natl Acad Sci USA 76, 5124–5128Google Scholar
  35. 35.
    Fujita F, Davis MS and Fajer J (1978) J Am Chem Soc 100, 6280–6282Google Scholar
  36. 36.
    Furrer R and Thurnauer MC (1983) FEBS Lett 153, 399–403Google Scholar
  37. 37.
    Gast P (1982) Ph D Thesis, State University LeidenGoogle Scholar
  38. 38.
    Gast P and Hoff AJ (1979) Biochim Biophys Acta 548, 520–535Google Scholar
  39. 39.
    Gast P, Swarthoff T, Ebskamp FCR and Hoff AJ (1983) Biochim Biophys Acta 722, 168–175Google Scholar
  40. 40.
    Golbeck JH and Kok B (1978) Arch Biochem Biophys 188, 233–242Google Scholar
  41. 41.
    Golbeck JH and Warden JT (1982) Biochim Biophys Acta 681, 77–84Google Scholar
  42. 42.
    Golbeck JH, Velthuys BR and Kok B (1978) Biochim Biophys Acta 504, 226–230Google Scholar
  43. 43.
    Govindjee (1984) In ‘Advances in Photosynthesis Research’ (C Sybesma ed.) Vol I, Martinus Nijhoff/Dr W Junk Publishers Den Haag pp 227–238Google Scholar
  44. 44.
    Heathcote P and Evans MCW (1980) FEBS Lett 111, 381–385Google Scholar
  45. 45.
    Heathcote P and Evans MCW (1981) in ‘Photosynthesis II’ pp 665–675 (Akoyunoglou E ed.) Balaban Int Sci Press PhiladelphiaGoogle Scholar
  46. 46.
    Heathcote P, Williams-Smith DL and Evans MCW (1978) Biochem J 170 373–378Google Scholar
  47. 47.
    Heathcote P, Williams-Smith DL, Sihra CK and Evans MCW (1978) Biochim Biophys Acta 503, 338–342.Google Scholar
  48. 48.
    Heathcote P, Timofeev KN and Evans MCW (1979) FEBS Lett 101, 105–109Google Scholar
  49. 49.
    Hiyama T and Fork D (1980) Arch Aiochem Biophys 199, 488–496Google Scholar
  50. 50.
    Hiyama T and Ke B (1971) Proc Natl Acad Sci USA 68, 1010–1013Google Scholar
  51. 51.
    Hiyama T Ohtsuka T and Sakurai H (1984) J Biochem 95, 855–860Google Scholar
  52. 52.
    Hootkins R, Malkin R and Bearden A (1981) FEBS Lett 123, 299–234Google Scholar
  53. 53.
    Hootkins R and Bearden A (1983) Biochim Biophys Acta 723, 16–29Google Scholar
  54. 54.
    Interschick-Niebler E and Lichententhaler HK (1981) Z Naturforsch 63c, 276–283Google Scholar
  55. 55.
    Kamogawa K, Namiki A, Nakashima N, Yoshihara K and Ikegami I (1981) Photochem Photobiol 34, 551–516Google Scholar
  56. 56.
    Kamogawa K, Morris JM, Takagi Y, Nakashima N, Yoshihara K and Ikegami I (1983) Photochem Photobiol 37, 207–213Google Scholar
  57. 57.
    Kaplan S and Arntzen CJ (1982) in Photosynthesis I ‘Energy conversion by Plants and bacteria’ (Govindjee ed.) Academic Press, New York pp. 65–151Google Scholar
  58. 58.
    Karapetyan NV and Shubin VV (1984) Photochem Photobiol 39, 28SGoogle Scholar
  59. 59.
    Ke B (1972) Arch Biochem Biophys 152, 70–77Google Scholar
  60. 60.
    Ke B and Beinert H (1973) Biochim Biophys Acta 305, 689–693Google Scholar
  61. 61.
    Ke B, Hansen RE and Beinert H (1973) Proc Natl Acad Sci USA 70, 2941–2945Google Scholar
  62. 62.
    Ke B Sugahara K Shaw ER, Hansen RE, Hamilton WD and Beinert H (1974) Biochim Biophys Acta 368, 401–408Google Scholar
  63. 63.
    Ke B, Dolan E, Sugahara K and Shaw ER (1975) Biochim Biophys Acta 408, 12–25Google Scholar
  64. 64.
    Ke B, Dolan E, Sugahara K, Hawkridge F, Demeter S and Shaw ER (1977) Plant Cell Physiol Spec Issue, p 187–199Google Scholar
  65. 65.
    Knaff DB and Malkin R (1973) Arch Biochem Biophys 159, 555–562Google Scholar
  66. 66.
    Koike H and Katoh S (1982) Photochem Photobiol 35, 527–532Google Scholar
  67. 67.
    Kok B (1956) Biochim. Biophys Acta 22, 299–401Google Scholar
  68. 68.
    Leigh JS and Dutton PL (1974) Biochim Biophys Acta 357, 67–77Google Scholar
  69. 69.
    Lozier RH and Butler WL (1974) Biochim Biophys Acta 333, 460–464Google Scholar
  70. 70.
    Malkin R (1978) FEBS Lett 87, 329–333Google Scholar
  71. 71.
    Malkin R (1984) Biochim Biophys Acta 764, 63–69Google Scholar
  72. 72.
    Malkin R and Bearden AJ (1971) Proc Natl Acad Sci USA 68, 16–19Google Scholar
  73. 73.
    Malkin R and Bearden AJ (1978) Biochim Biophys Acta 505, 147–182Google Scholar
  74. 74.
    Mathis P and Conjeaud H (1979) Photochem Photobiol 29, 833–837Google Scholar
  75. 75.
    Mathis P, Sauer K and Remy R (1978) FEBS Lett 88, 275–278Google Scholar
  76. 76.
    Mayne BC and Rubinstein D (1966) Nature 210, 734–735Google Scholar
  77. 77.
    McClean MB and Sauer K (1982) Biochim Biophys Acta 679, 384–392Google Scholar
  78. 78.
    McCracken JC and Sauer K (1983) Biochim Biophys Acta 724 83–93Google Scholar
  79. 79.
    McCracken JC and Sauer K (1984) in ‘Advances in Photosynthesis Research’ 1, pp 585–588 (Sybesma C ed.) M Nijhoff/Junk Den HaagGoogle Scholar
  80. 80.
    McCracken JC, Frank HA and Sauer K (1982) Biochim Biophys Acta 679, 156–168Google Scholar
  81. 81.
    McIntosh AR and Bolton JR (1976) Biochim Biophys Acta 430, 555–559Google Scholar
  82. 82.
    McIntosh AR, Chu M and Bolton JR (1975) Biochim Biophys Acta 376, 308–314Google Scholar
  83. 83.
    McIntosh AR, Manikowski H and Bolton JR (1979) J Phys Chem 83, 3309–3333Google Scholar
  84. 84.
    McIntosh AR, Manikowski H, Wong SK, Taylor CPS and Bolton JR (1979) Biochem Biophys Res Commun 87, 605–612Google Scholar
  85. 85.
    Norris JR, Uphaus RA, Crespi HG and Katz JJ (1971) Proc Natl Acad Sci USA 68, 625–629Google Scholar
  86. 86.
    Norris JR, Druyan ME and Katz JJ (1973) J Am Chem Soc 95, 1680–1682Google Scholar
  87. 87.
    Nugent JHA, Miller BL and Evans MCW (1981) Biochim Biophys Acta 634, 249–255Google Scholar
  88. 88.
    O'Malley PJ and Babcock GT (1983), Biophys J 41, 315aGoogle Scholar
  89. 89.
    O'Malley PJ and Babcock GT (1984) Proc Natl Acad Sci USA 81, 1098–1101Google Scholar
  90. 90.
    Parson WW and Ke B (1982) in Photosynthesis I, ‘Energy Conversion by Plants and Bacteria’ (Govindjee ed.) Academic Press New York pp 331–385Google Scholar
  91. 91.
    Phillipson KP Satoh VL and Sauer K (1972) Biochemistry 11, 4591–4594Google Scholar
  92. 92.
    Rupp H, Rao KK, Hall DO and Cammack R (1978) Biochim Biophys Acta 537, 255–269Google Scholar
  93. 93.
    Rutherford AW and Mullet JE (1981) Biochim Biophys Acta 635, 225–235Google Scholar
  94. 94.
    Rutherford AW, Mullet JE, Paterson DR, Robinson HH, Arntzen CJ and Crofts AR (1981) in ‘Photosynthesis III’ (Akoyunoglou G ed), pp 919–928 Balaban Science Service PhiladelphiaGoogle Scholar
  95. 95.
    Rutherford AW, Paterson DR and Mullet JE (1981) Biochim Biophys Acta 635, 205–214Google Scholar
  96. 96.
    Rutherford AW, Satoh K and Mathis P (1983) Biophys J 41, 40aGoogle Scholar
  97. 97.
    Sauer K, Acker S, Mathis P and Van Best J (1977) in: ‘Bioenergetics of Membranes’ (Packer L, Papageorgiou G and Trebst A eds) Elsevier, 351–359Google Scholar
  98. 98.
    Sauer K, Mathis P, Acker S and Van Best JA (1978) Biochim Biophys Acta 503, 120–134Google Scholar
  99. 99.
    Sauer K, Mathis P, Acker S and Van Best JA (1979) Biochim Biophys Acta 543, 466–472Google Scholar
  100. 100.
    Setif P (1984) Thèse d'Etat, University of ParisGoogle Scholar
  101. 101.
    Setif P and Mathis P (1980) Arch Biochem Biophys 204, 477–485Google Scholar
  102. 102.
    Setif P, Hervo G and Mathis P (1981) Biochim Biophys Acta 638, 257–267Google Scholar
  103. 103.
    Setif P, Quaegerbeur JP and Mathis P (1982) Biochim Biophys Acta 681, 345–353Google Scholar
  104. 104.
    Setif P, Mathis P, Lagoutte B and Duranton J (1984) In ‘Advances in Photosynthesis Research’ 1, pp 589–591 (ed Sybesma C) M Nijhoff/junk publishers Den HaagGoogle Scholar
  105. 105.
    Steif P, Mathis P and Vanngard T (1984) Biochim Biophys Acta, submittedGoogle Scholar
  106. 106.
    Shuvalov VA, Dolan E and Ke B (1979) Proc Natl Acad Sci USA 76, 770–773Google Scholar
  107. 107.
    Shuvalov VA, Ke B and Dolan E (1979) FEBS Lett 100, 5–8Google Scholar
  108. 108.
    Shuvalov VA, Klevanik AV, Sharkov AV, Kryukov PG and Ke B (1979) FEBS Lett 107, 313–316Google Scholar
  109. 109.
    Sonneveld A, Duysens LNM and Moerdijk A, (1981) Biochim Biophys Acta 636, 39–49Google Scholar
  110. 110.
    Swarthoff T, Gast P, Amesz J and Buisman HP (1982) FEBS Lett 146, 129–132Google Scholar
  111. 111.
    Takahashi Y, Hirota K and Katoh S (1984) Photosynth Res submittedGoogle Scholar
  112. 112.
    Thurnauer MC and Gast P (1985) Photobiochem Photobiophys submittedGoogle Scholar
  113. 113.
    Thurnauer MC and Norris JR (1980) Chem Phys Lett 76, 557–561Google Scholar
  114. 114.
    Thurnauer MC, Katz JJ and Norris JR (1975) Proc Natl Acad Sci USA 72, 3270–3274Google Scholar
  115. 115.
    Thurnauer MC, Bowman MK and Norris JR (1979) FEBS Lett 100, 309–312Google Scholar
  116. 116.
    Thurnauer MC, Rutherford AW and Norris JR (1982) Biochim Biophys Acta 682, 332–338Google Scholar
  117. 116a.
    van Gorkom HJ (1985) Photosynthesis Research 6, 97–112Google Scholar
  118. 117.
    Warden JT and Bolton JR (1973) J Am Chem Soc 95, 6435–6436Google Scholar
  119. 118.
    Warden JT, Mohanty P and Bolton JR (1974) Biochem Biophys Res Commun 59, 872–878Google Scholar
  120. 119.
    Wasielewski MR, Norris JR, Crespi HL and Horper J (1981) J Am Chem Soc 103, 7664–7665Google Scholar
  121. 120.
    Wasielewski MR, Norris JR, Shipman LL, Lin CP and Svec WA (1981) Proc Natl Acad Sci USA 78, 2957–2961Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1985

Authors and Affiliations

  • A. W. Rutherford
    • 1
  • P. Heathcote
    • 2
  1. 1.Service de Biophysique, Department de BiologieCEN SaclayGif sur YvetteFrance
  2. 2.School of Biological Sciences, Queen Mary CollegeUniversity of LondonLondonUK

Personalised recommendations