Journal of Atmospheric Chemistry

, Volume 1, Issue 2, pp 125–135

Tropospheric methane in the mid-latitudes of the Southern Hemisphere

  • P. J. Fraser
  • M. A. K. Khalil
  • R. A. Rasmussen
  • L. P. Steele


Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.

Key words

Methane troposphere southern hemisphere trend annual cycle vertical gradient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baseline 1979–1980, 1983, Baseline Air Monitoring Report, 1979–1980, Australian Government Dept. Science and Technology, Canberra, Australia.Google Scholar
  2. Beardsmore, D. J., Pearman, G. I., Fraser, P. J. B., and O'Toole, J. G., 1978, The CSIRO (Australia) atmospheric carbon dioxide monitoring program: the first six years of data, CSIRO Division of Atmospheric Physics Technical Paper No. 35, 72 pp.Google Scholar
  3. Blake D. R., Mayer E. W., Tyler S. C., Makide Y., Montague D. C., and Rowland F. S., 1982, Global increase in atmospheric methane concentrations between 1978 and 1980, Geophys. Res. Lett. 9, 477–480.Google Scholar
  4. Chameides W. L., Liu S. C., and Cicerone R. J., 1977, Possible variations in atmospheric methane, J. Geophys. Res. 82, 1795–1798.Google Scholar
  5. Cofer W. R., 1982, Methane and nonmethane hydrocarbon concentrations in the north and south Atlantic marine boundary layer, J. Geophys. Res. 87, 7201–7205.Google Scholar
  6. Crutzen P. J., 1982, The global distribution of hydroxyl, in E. D. Goldberg (ed.), Atmospheric Chemistry, Springer-Verlag, Berlin, pp. 313–328.Google Scholar
  7. Draper N. R. and Smith H., 1981, Applied Regression Analysis, 2nd edn., John Wiley and Sons, New York.Google Scholar
  8. Ehhalt D. H., 1978, The CH4 concentration over the ocean and its possible variation with latitude, Tellus 30, 169–176.Google Scholar
  9. Ehhalt D. H. and Schmidt V., 1978, Sources and sinks of atmospheric methane, Pure Appl. Geophys. 116, 452–463.Google Scholar
  10. Fraser P. J., Khalil M. A. K., Rasmussen R. A., and Crawford A. J., 1981, Trends of atmospheric methane in the southern hemisphere, Geophys. Res. Lett. 8, 1063–1066.Google Scholar
  11. Fraser, P. J. B. and Pearman, G. I., 1977, Atmospheric CCl3F, CCl4 and CH3CCl3 concentrations over southeast Australia during November 1976, NASA Tech. Memo. TMX-73630, 145–154.Google Scholar
  12. Fraser P. J. and Pearman G. I., 1978a, Atmospheric halocarbons in the southern hemisphere, Atmos. Environ. 12, 839–844.Google Scholar
  13. Fraser P. J. and Pearman G. I., 1978b, Atmospheric halocarbons-the CSIRO southern hemisphere program, in E. T. White et al. (eds.), Proc. Internat. Clean Air Conference (Brisbane, Australia), Ann Arbor Science, Ann Arbor, 703–716.Google Scholar
  14. Graedel T. E. and McRae J. E., 1980, On the possible increase of the atmospheric methane and carbon monoxide concentrations during the last decade, Geophys. Res. Lett. 7, 977–979.Google Scholar
  15. Hameed S. and Cess R. D., 1983, Impact of a global warming on biospheric sources of methane and its climatic consequences, Tellus 35B, 1–7.Google Scholar
  16. Hameed S., Cess R. D., and Hogan J. S., 1980. Response of the global climate to changes in the atmospheric chemical composition due to fossil fuel burning, J. Geophys. Res. 85, 7537–7545.Google Scholar
  17. Heidt L. E., Krasnec J. P., Lueb R. A., Pollock W. H., Henry B. E., and Crutzen P. J., 1980, Latitudinal distributions of CO and CH4 over the Pacific, J. Geophys. Res. 85, 7329–7336.Google Scholar
  18. Khalil M. A. K. and Rasmussen R. A., 1982, Secular trends in atmospheric methane (CH4), Chemosphere 11, 877–883.Google Scholar
  19. Khalil M. A. K. and Rasmussen R. A., 1983, Sources, sinks, and seasonal cycles of atmospheric methane, J. Geophys. Res. 88, 5131–5144.Google Scholar
  20. Lacis A., Hansen J., Lee P., Mitchell T., and Lebedeff S., 1981, Greenhouse effect of trace gases, 1970–1980, Geophys. Res. Lett. 8, 1035–1038.Google Scholar
  21. Logan J. A., Prather M. J., Wofsy S. C., and McElroy M. B., 1981, Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 7210–7254.Google Scholar
  22. Malkov I. P., Dianov-Klokov V. I., and Lukshin V. V., 1980, Measurements of methane concentration distribution in northern and southern hemispheres, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 16, 540–543.Google Scholar
  23. Mayer E. W., Blake D. R., Tyler S. C., Makide Y., Montague D. C., and Rowland F. S., 1982, Methane: interhemispheric concentration gradient and atmospheric residence time, Proc. Natl. Acad. Sci. USA 79, 1366–1370.Google Scholar
  24. Owens A. J., Steed J. M., Filkin D. L., Miller C., and Jesson J. P., 1982, The potential effects of increased methane on atmospheric ozone, Geophys. Res. Lett. 9, 1105–1108.Google Scholar
  25. Pearman, G. I., Beardsmore, D. J., and O'Brien, R. C., 1983, The CSIRO (Australia) atmospheric carbon dioxide monitoring program: ten years of aircraft data, CSIRO Division of Atmospheric Physics Technical Paper No. 45, 114 pp.Google Scholar
  26. Pinto J. P., Yung Y. L., Rind D., Russell G. L., Lerner J. A., Hansen J. E., and Hameed S., 1983, A general circulation model study of atmospheric carbon monoxide, J. Geophys. Res. 88, 3691–3702.Google Scholar
  27. Rasmussen R. A., 1972, A quantitative cryogenic sampler, design and operation, American Laboratory 4, 7–12.Google Scholar
  28. Rasmussen R. A. and Khalil M. A. K., 1981a, Increase in the concentration of atmospheric methane, Atmos. Environ. 15, 883–886.Google Scholar
  29. Rasmussen R. A. and Khalil M. A. K., 1981b, Atmospheric methane (CH4): trends and seasonal cycles, J. Geophys. Res. 86, 9826–9832.Google Scholar
  30. Rasmussen R. A. and Khalil M. A. K., 1982, Latitudinal distributions of trace gases in and above the boundary layer, Chemosphere 11, 227–235.Google Scholar
  31. Rasmussen R. A. and Khalil M. A. K., 1983, Natural and anthropogenic trace gases in the lower tropospere of the arctic, Chemosphere 12, 371–375.Google Scholar
  32. Rasmussen R. A., Khalil M. A. K., Crawford A. J., and Fraser P. J., 1982, Natural and anthropogenic trace gases in the southern hemisphere, Geophys. Res. Lett. 9, 704–707.Google Scholar
  33. Sheppard J. C., Westberg H., Hopper J. F., Ganesan K., and Zimmerman P., 1982, Inventory of global methane sources and their production rates, J. Geophys. Res. 87, 1305–1312.Google Scholar
  34. Singh H. B. and Salas L. J., 1982, Measurements of selected light hydrocarbons over the Pacific Ocean: latitudinal and seasonal variations, Geophys. Res. Lett. 9, 842–845.Google Scholar
  35. Singh H. B., Salas L. J., Shigeishi H., and Scribner E., 1979, Atmospheric halocarbons, hydrocarbons, and sulfur hexafluoride: global distributions, sources and sinks, Science 203, 899–903.Google Scholar
  36. Wang W. C., Yung Y. L., Lacis A. A., Mo T., and Hansen J. E., 1976, Greenhouse effect due to man-made perturbations of trace gases, Science 194, 685–690.Google Scholar
  37. Yurganov L. N., Malkov I. P., and Dianov-Klokov V. I., 1979, Study of the abundance of minor atmospheric components in northern and southern hemispheres, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 15, 807–812.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • P. J. Fraser
    • 1
  • M. A. K. Khalil
    • 3
  • R. A. Rasmussen
    • 3
  • L. P. Steele
    • 4
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of Colorado/NOAABoulderU.S.A.
  2. 2.Division of Atmospheric ResearchCSIROAspendaleAustralia
  3. 3.Department of Environmental ScienceOregon Graduate CenterBeavertonU.S.A.
  4. 4.Geophysical Monitoring for Climatic ChangeAir Resources Laboratory/NOAABoulderU.S.A.

Personalised recommendations