Journal of Atmospheric Chemistry

, Volume 24, Issue 1, pp 57–109 | Cite as

Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds

  • Pradeep Saxena
  • Lynn M. Hildemann


Although organic compounds typically constitute a substantial fraction of the fine particulate matter (PM) in the atmosphere, their molecular composition remains poorly characterized. This is largely because atmospheric particles contain a myriad of diverse organic compounds, not all of which extract in a single solvent or elute through a gas chromatograph; therefore, a substantial portion typically remains unanalyzed. Most often the chemical analysis is performed on a fraction that extracts in organic solvents such as benzene, ether or hexane; consequently, information on the molecular composition of the water-soluble fraction is particularly sparse and incomplete.

This paper investigates theoretically the characteristics of the water-soluble fraction by splicing together various strands of information from the literature. We identify specific compounds that are likely to contribute to the water-soluble fraction by juxtaposing observations regarding the extraction characteristics and the molecular composition of atmospheric particulate organics with compound-specific solubility and condensibility for a wide variety of organics. The results show that water-soluble organics, which constitute a substantial fraction of the total organic mass, include C2 to C7 multifunctional compounds (e.g., diacids, polyols, amino acids). The importance of diacids is already recognized; our results provide an impetus for new experiments to establish the atmospheric concentrations and sources of polyols, amino acids and other oxygenated multifunctional compounds.

Key words

organic particle composition water-soluble organics hygroscopic organics Henry's law constants organic solubility polyols multifunctional compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M. M. and Prausnitz, J. M., 1994, Modeling the excess Gibbs energy, in S. I. Sandler (ed.), Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, New York, pp. 1–86.Google Scholar
  2. Adamson, A. W., 1976, Physical Chemistry of Surfaces, John Wiley and Sons, New York.Google Scholar
  3. Aldrich, 1994, Catalog Handbook of Fine Chemicals. Aldrich Chemical Company, Milwaukee, WI.Google Scholar
  4. Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V., and Young, J. R., 1994, Fourier transform infrared spectroscopy of aerosol collected in a low pressure impactor (LPI/FTIR): method development and field calibration, Aerosol Sci. Technol. 21, 325–342.Google Scholar
  5. Andrews, E. and Larson, S. M., 1993, Effect of surfactant layers on the size changes of aerosol particles as a function of relative humidity, Environ. Sci. Technol. 27, 857–865.Google Scholar
  6. Aneja, V. P., 1993, Organic compounds in cloud water and their deposition at a remote continental site, J. Air Waste Manage. Assoc. 43, 1239–1244.Google Scholar
  7. Apelblat, A. and Manzurola, E., 1987, Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K, J. Chem. Thermodyn. 19, 317–320.Google Scholar
  8. Ashworth, R. A., Howe, G. B., Mullins, M. E., and Rogers, T. N., 1988, Air-water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater. 18, 25–36.Google Scholar
  9. Atkinson, R., 1990, Gas-phase tropospheric chemistry of organic compounds: a review, Atmos. Environ. 24A, 1–41.Google Scholar
  10. Atkinson, R. and Aschmann, S. M., 1995, Alkoxy radical isomerization products from the gas-phase OH radical-initiated reactions of 2,4-dimethyl-2-pentanol and 3,5-dimethyl-3-hexanol, Environ. Sci. Technol. 29, 528–536.Google Scholar
  11. Benkelberg, H.-J., Hamm, S., and Warneck, P., 1995, Henry's law coefficient for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite, J. Atmos. Chem. 20, 17–34.Google Scholar
  12. Betterton, E. A., 1991, The partitioning of ketones between the gas and aqueous phases, Atmos. Environ. 25A, 1473–1477.Google Scholar
  13. Betterton, E. A. and Hoffmann, M. R., 1988, Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol. 22, 1415–1418.Google Scholar
  14. Bone, R., Cullis, P., and Wolfenden, R., 1983, Solvent effects on equilibria of addition of nucleophiles to acetaldehyde and the hydrophilic character of diols, J. Am. Chem. Soc. 105, 1339–1343.Google Scholar
  15. Brimblecombe, P., Clegg, S. L., and Khan, I., 1992, Thermodynamic properties of carboxylic acids relevant to their solubility in aqueous solutions, J. Aerosol Sci. 23, S901-S904.Google Scholar
  16. Budavari, S., O'Neil, M. J., Smith, A., and Heckelman, P. E., 1989, The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals, Merck & Co., Rahway, NJ.Google Scholar
  17. Burrows, H. D., 1992, Studying odd-even effects and solubility behavior using α, ω-dicarboxylic acids, J. Chem. Educ. 69, 69–73.Google Scholar
  18. Butler, J. A. V. and Ramchandani, C. N., 1935, The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc. 280, 952–955.Google Scholar
  19. Butler, J. A. V., Ramchandani, C. N., and Thomson, D. W., 1935, The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc. 280, 280–285.Google Scholar
  20. Cadle, S. H., Groblicki, P. J., and Mulawa, P. A., 1983, Problems in the sampling and analysis of carbon particulate, Atmos. Environ. 17, 593–600.Google Scholar
  21. Cadle, S. H. and Groblicki, P. J., 1982, An evaluation of methods for the determination of organic and elemental carbon in particulate samples, in G. T. Wolff and R. L. Klimisch (eds.), Particulate Carbon-Atmospheric Life Cycle, Plenum Press, New York, pp. 89–109.Google Scholar
  22. Carlo, M. J., 1971, Thermodynamic quantities of some biochemically important organic acids in aqueous buffered solutions at 25°C. Ph.D. thesis, Department of Chemistry, Texas A&M University, College Station, TX.Google Scholar
  23. Carson, P. G., Neubauer, K. R., Johnston, M. V., and Wexler, A. S., 1995, On-line chemical analysis of aerosols by rapid single-particle mass spectrometry, J. Aerosol Sci. 26, 535–545.Google Scholar
  24. Cass, G. R., 1995, Private communication concerning observations discussed in Rogge et al. (1993a).Google Scholar
  25. Cholak, J., Schafer, L. J., Yaeger, D. W., and Kehoe, R. A., 1955, The nature of the suspended matter, in N. A. Renzetti (ed.), An Aerometric Survey of the Los Angeles Basin August-November 1954, Air Pollution Foundation, Los Angeles, CA, pp. 201–225.Google Scholar
  26. Clegg, S. L., Brimblecombe, P., and Khan, I., 1996, The Henry's law constant of oxalic acid and its partitioning into the atmospheric aerosol, Idojaras (in press).Google Scholar
  27. Cohen, S., Marcus, Y., Migron, Y., Dikstein, S., and Shafran, A., 1993, Water sorption, binding and solubility of polyols, J. Chem. Soc. Faraday Trans. 89, 3271–3275.Google Scholar
  28. Coudert, R., Paris, J., and Cao, A., 1994, Hydrophobic or micellar behavior of 2-butyl and 2-pentyl-2-(hydroxymethyl)-1,3-propaneDiol in water. Volumes and osmotic coefficients, J. Colloid Interface Sci. 163, 94–99.Google Scholar
  29. Coudert, R., Hajji, S. M., and Cao, A., 1993, Thermodynamics of micellar systems: volumes, osmotic coefficients, and aggregation numbers of a homologous series of 1,2,3-alkane triols in water, J. Colloid Interface Sci. 155, 173–182.Google Scholar
  30. Cronn, D. R., Charlson, R. J., Knights, R. L., Crittenden, A. L., and Appel, B. R., 1977, A survey of the molecular nature of primary and secondary components of particles in urban air by high-resolution mass spectrometry, Atmos. Environ. 11, 929–937.Google Scholar
  31. Curme Jr., G. O. and Johnston, F., 1952, Glycols, Reinhold Publ. Corp., New York.Google Scholar
  32. Daisey, J. M., Hershman, R. J., and Kneip, T. J., 1982, Ambient levels of particulate organic matter in New York City in winter and summer, Atmos. Environ. 16, 2161–2168.Google Scholar
  33. Dean, J. A., 1992, Lange's Handbook of Chemistry, 14th edn, McGraw-Hill, New York.Google Scholar
  34. de Kruif, C. G., van Ginkel, C. H. D., and Voogd, J., 1975, Torsion-effusion vapour-pressure measurements of organic compounds, Conf. Inter. Thermo. Chim. August 26–30, Montpellier, France, pp. 11–18.Google Scholar
  35. de Wit, H. G. M., Bouwstra, J. A., Blok, J. G., and de Kruif, C. G., 1983, Vapor pressures and lattice energies of oxalic acid, mesotartaric acid, phloroglucinol, myoinositol, and their hydrates, J. Chem. Phys. 78, 1470–1475.Google Scholar
  36. Drefahl, A. and Reinhard, M., 1995, Handbook for estimating physico-chemical properties of organic compounds and the companion software package DESOC (Data Evaluation System for Organic Compounds), Stanford University Bookstore, Stanford, CA.Google Scholar
  37. Duce, R. A., 1978, Speculations on the budget of particulate and vapor phase non-methane organic carbon in the global troposphere, Pure Applied Geophys. 116, 244–273.Google Scholar
  38. Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., and Wallace, G. T., 1983, Organic material in the global troposphere, Rev. Geophys. Space Phys. 21, 921–952.Google Scholar
  39. Finlayson-Pitts, B. J. and Pitts Jr., J. N., 1986, Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley and Sons, New York.Google Scholar
  40. Fischer, M. and Warneck, P., 1991, The dissociation constant of pyruvic acid: determination by spectrophotometric measurements, Bunsenges. Phys. Chem. 95, 523–527.Google Scholar
  41. Franzblau, E., Burton, C. S., and Hidy, G. M., 1984, Aerosol particle formation from ozone-terminal olefin reactions, Aerosol Sci. Technol. 3, 167–176.Google Scholar
  42. Fredenslund, A. and Sorensen, J. M., 1994, Group contribution estimation methods, in S. I. Sandler (ed.), Models for Thermodynamic and Phase Equilibria Calculations, Marcel Dekker, New York, pp. 287–361.Google Scholar
  43. Gill, P. S., Graedel, T. E., and Weschler, C. J., 1983, Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes, Rev. Geophys. Space Phys. 22, 903–920.Google Scholar
  44. Gmehling, J., Onken, U., and Rarey-Nies, J. R., 1988, Vapor-liquid Equilibrium Data Collection. Aqueous Systems (Supplement 2). DECHEMA Chemistry Data Series, Vol. 1, Part 1b, DECHEMA (Deutsche Gesellschaft fur Chemisches Apparatewesen, Chemische Technik und Biotechnologie e. V.), Frankfurt, Germany.Google Scholar
  45. Gmehling, J., Onken, U., and Arlt, W., 1981, Vapor-liquid Equilibrium Data Collection. Aqueous-Organic Systems (Supplement 1). DECHEMA Chemistry Data Series, Vol. 1, Part 1a, DECHEMA (Deutsche Gesellschaft fur Chemisches Apparatewesen), Frankfurt, Germany.Google Scholar
  46. Gmehling, J. and Onken, U., 1977, Vapor-liquid Equilibrium Data Collection. Aqueous-Organic Systems. DECHEMA Chemistry Data Series, Vol. 1, Part 1, DECHEMA (Deutsche Gesellschaft fur Chemisches Apparatewesen), Frankfurt, Germany.Google Scholar
  47. Gorzelska, K., Galloway, J. N., Watterson, K., and Keene, W. C., 1992, Water-soluble primary amine compounds in rural continental precipitation, Atmos. Environ. 26A, 1005–1018.Google Scholar
  48. Graedel, T. E., Hawkins, D. T. and Claxton, L. D., 1986, Atmospheric Chemical Compounds-Sources, Occurrence, and Bioassay, Academic Press, Orlando, FL.Google Scholar
  49. Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., and Rau, J. A., 1986, Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles, Environ. Sci. Technol. 20, 580–589.Google Scholar
  50. Grosjean, D., 1992a, In situ organic aerosol formation during a smog episode: estimated production and chemical functionality, Atmos. Environ. 26A, 953–963.Google Scholar
  51. Grosjean, D., 1992b, Atmospheric concentrations and temporal variations of C1−C3 carbonyl compounds at two rural sites in central Ontario, Atmos. Environ. 26A, 349–351.Google Scholar
  52. Grosjean, D., 1991, Ambient levels of formaldehyde, acetaldehyde, and formic acid in southern California: results of a one-year base-line study, Environ. Sci. Technol. 25, 710–715.Google Scholar
  53. Grosjean, D., 1989, Organic acids in southern California air: ambient concentrations, mobile source emissions, in situ formation and removal processes, Environ. Sci. Technol. 23, 1506–1514.Google Scholar
  54. Grosjean, D., 1982, Formaldehyde and other carbonyls in Los Angeles ambient air, Environ. Sci. Technol. 16, 254–262.Google Scholar
  55. Grosjean, D., 1977, Aerosols, in Ozone and Other Photochemical Oxidants, National Academy of Sciences, Washington, DC, pp. 45–125.Google Scholar
  56. Grosjean, D., 1975, Solvent extraction and organic carbon determination in atmospheric particulate matter: the organic extraction-organic carbon analyzer (OE-OCA) technique, Anal. Chem. 47, 797–805.Google Scholar
  57. Grosjean, D., Grosjean, E., and William II, E. L., 1994, Atmospheric chemistry of olefins: a product study of the ozone-alkene reaction with cyclohexane added to scavenge OH, Environ. Sci. Technol. 28, 186–196.Google Scholar
  58. Grosjean, D., Grosjean, E., and William II, E. L., 1993, Atmospheric chemistry of unsaturated alcohols, Environ. Sci. Technol. 27, 2478–2485.Google Scholar
  59. Grosjean, D. and Seinfeld, J. H., 1989, Parameterization of the formation potential of secondary organic aerosols, Atmos. Environ. 23, 1733–1747.Google Scholar
  60. Grosjean, D. and Friedlander, S. K., 1980, Formation of organic aerosols from cyclic olefins and diolefins, in G. M. Hidy, P. K. Mueller, D. Grosjean, B. R. Appel, and J. J. Wesolowski (eds.), The Character and Origins of Smog Aerosols-A Digest of Results from California Aerosol Characterization Experiment (ACHEX), John Wiley & Sons, New York, pp. 435–473.Google Scholar
  61. Grosjean, D., Cauwenberghe, K. V., Schmid, J. P., Kelly, P. E., and Pitts Jr., J. N., 1978 Identification of C3−C10 aliphatic dicarboxylic acids in airborne particulate matter, Environ. Sci. Technol. 12, 313–317.Google Scholar
  62. Grosjean, D. and Friedlander, S. K., 1975, Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere, J. Air Pollut. Control Assoc. 25, 1038–1044.Google Scholar
  63. Grosjean, D. and Friedlander, S. K., 1974, Gas-particle distribution factors for organic pollutants in the Los Angeles atmosphere. Presented at the 67th Annual Meeting of the Air Pollution Control Association, June 9–13, Denver, CO.Google Scholar
  64. Guenther, A., Hewitt, C. N., Erickson, D. et al., 1995, A global model of natural volatile organic compound emissions, J Geophys. Res. 100, 8873–8892.Google Scholar
  65. Gundel, L. A., de Martins, B. S., and Daisey, J., 1995, Polar organic material in ambient particles. Presented at the Air and Waste Management Association's International Conference entitled Particulate Matter: Health and Regulatory Issues, April 4–6, Pittsburgh, PA.Google Scholar
  66. Gundel, L. A., Daisey, J. M., de Carvalho, L. R. F., Kado, N. Y., and Schuetzle, D., 1993, Polar organic matter in airborne particles: chemical characterization and mutagenic activity, Environ. Sci. Technol. 27, 2112–2119.Google Scholar
  67. Gundel, L. A. and Novakov, T., 1984, Characterization of particles from several sources and three urban areas by solvent extraction, Atmos. Environ. 18, 273–276.Google Scholar
  68. Hahn, J., 1980, Organic constituents of natural aerosols, Ann. N. Y. Acad. Sci. 338, 359–376.Google Scholar
  69. Hameri, K., Rood, M. J., and Hansson, H.-C., 1992, Hygroscopic properties of a NaCl aerosol coated with organic compounds, J. Aerosol Sci. 23, Sppl. 1, S437-S440.Google Scholar
  70. Hanel, G., 1976, The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys. 19, 73–188.Google Scholar
  71. Harrington, R. F., Gertler, A. W., Grosjean, D., and Amar, P., 1993, Formic acid and acetic acid in the Western Sierra Nevada, California, Atmos. Environ. 27A, 1843–1849.Google Scholar
  72. Hartmann, W. R., Andreae, M. O., and Helas, G., 1989, Measurements of organic acids over central Germany, Atmos. Environ. 23, 1531–1533.Google Scholar
  73. Helmig, D., Bauer, A., Muller, J., and Klein, W., 1990, Analysis of particulate organics in a forest atmosphere by thermodesorption GC/MS, Atmos. Environ. 24A, 179–184.Google Scholar
  74. Hildemann, L. M., Rogge, W. F., Cass, G. R., Mazurek, M. A., and Simoneit, B. R. T., 1996, Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles, J. Geophys. Res. (in press).Google Scholar
  75. Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1994, Seasonal trends in Los Angeles ambient organic aerosol observed by high-resolution gas chromatography, Aerosol Sci. Technol. 20, 303–317.Google Scholar
  76. Hine, J. and Mookerjee, P. K., 1975, The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem. 40, 292–298.Google Scholar
  77. Hoff, J. T., Mackay, D., Gillham, R., and Shiu, W. Y., 1993, Partitioning of organic chemicals at the air-water interface in environmental systems, Environ. Sci. Technol. 27, 2174–2180.Google Scholar
  78. Hort, E. V., 1972, Glycols and bischloroformates, in J. K. Stille and T. W. Campbell (eds.), Condensation Monomers, Wiley-Interscience, New York, pp. 261–310.Google Scholar
  79. Hoshika, Y., 1982, Gas chromatographic determination of lower fatty acids in air at part-per-trillion levels, Anal. Chem. 54, 2433–2437.Google Scholar
  80. Husar, R. B. and Shu, W. R., 1975, Thermal analyses of the Los Angeles smog aerosol, J. Appl. Meteorol. 14, 1558–1565.Google Scholar
  81. Johnson, B. J. and Dawson, G. A., 1993, A preliminary study of the carbon-isotopic content of ambient formic acid and two selected sources: automobile exhaust and formicine ants, J. Atmos. Chem. 17, 123–140.Google Scholar
  82. Junge, C. E., 1977, Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants, in I. H. Suffet (ed.), Fate of Pollutants in the Air and Water Environments, John Wiley and Sons, New York, pp. 7–25.Google Scholar
  83. Kames, J. and Schurath, U., 1992, Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies, J. Atmos. Chem. 15, 79–95.Google Scholar
  84. Kawamura, K. and Ikushima, K., 1993, Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere, Environ. Sci. Technol. 27, 2227–2235.Google Scholar
  85. Kawamura, K. and Kaplan, I. R., 1991, Organic compounds in rain water, in L. D. Hansen and D. J. Eatough (eds.), Organic Chemistry of the Atmosphere, CRC Press, Boca Raton, FL, pp. 233–284.Google Scholar
  86. Kawamura, K. and Gagosian, R. B., 1990, Mid-chain ketocarboxylic acids in the remote marine atmosphere: distribution patterns and possible formation mechanisms, J. Atmos. Chem. 11, 107–122.Google Scholar
  87. Kawamura, K. and Gagosian, R. B., 1988, Identification of isomeric hydroxy fatty acids in aerosol samples by capillary gas chromatography-mass spectrometry, J. Chromatogr. 438, 309–317.Google Scholar
  88. Kawamura, K. and Gagosian, R. B., 1987, Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids, Nature 325, 330–332.Google Scholar
  89. Kawamura, K. and Kaplan, I. R., 1987, Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol. 21, 105–110.Google Scholar
  90. Kawamura, K., Ng, L.-L., and Kaplan, I. R., 1985, Determination of organic acids (C1−C10) in the atmosphere, motor exhausts, and engine oils, Environ. Sci. Technol. 19, 1082–1086.Google Scholar
  91. Keene, W. C. and Galloway, J. N., 1986, Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res. 91, 14466–14474.Google Scholar
  92. Kelly, T. J., Callahan, P. J., Pleil, J., and Evans, G. F., 1993, Method development and field measurements of polar volatile organic compounds in ambient air, Environ. Sci. Technol. 27, 1146–1153.Google Scholar
  93. Khan, I., Brimblecombe, P., and Clegg, S. L., 1995, Solubilities of pyruvic acid and the lower (C1−C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem. 22, 285–302.Google Scholar
  94. Khwaja, H. A., 1995, Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site, Atmos. Environ. 29, 127–139.Google Scholar
  95. Klotz, B. G., Bierbach, A., Barnes, I., and Becker, K. H., 1995, Kinetic and mechanistic study of the atmospheric chemistry of muconaldehydes, Environ. Sci. Technol. 29, 2322–2332.Google Scholar
  96. Konig, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J., 1995, Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos. Environ. 29, 861–874.Google Scholar
  97. Koutrakis, P., 1995, Private communication concerning gas-particle distribution of C1−C8 organic acids in the observations discussed in Lawrence, J. E. and Koutrakis, P., 1996a&b.Google Scholar
  98. Lawrence, J. E. and Koutrakis, P., 1996a, Measurement and speciation of gas and particulate phase organic acidity in an urban environment. 1. Analytical, J. Geophys. Res. (in press).Google Scholar
  99. Lawrence, J. E. and Koutrakis, P., 1996b, Measurement and speciation of gas and particulate phase organic acidity in an urban environment, 2. Speciation, J. Geophys. Res. (in press).Google Scholar
  100. Lawrence, J. E. and Koutrakis, P., 1994, Measurement of atmospheric formic and acetic acids: methods evaluation and results from field study, Environ. Sci. Technol. 28, 957–964.Google Scholar
  101. Le Lacheur, R. M., Sonnenberg, L. B., Singer, P. C., Christman, R. F., and Charles, M. J., 1993, Identification of carbonyl compounds in environmental samples, Environ. Sci. Technol. 27, 2745–2753.Google Scholar
  102. Lefer, B. L., Talbot, R. W., Harriss, R. C. et al., 1994, Enhancement of acidic gases in biomass burning impacted air masses over Canada, J. Geophys. Res. 99, 1721–1737.Google Scholar
  103. Li, S.-M. and Winchester, J. W., 1993, Water soluble organic constituents in Arctic aerosols and snow pack, Geophys. Res. Lett. 20, 45–48.Google Scholar
  104. Lind, J. A. and Kok, G. L., 1994, Correction to ‘Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid’ by John A. Lind and Gregory L. Kok, J. Geophys. Res. 99, 21119.Google Scholar
  105. Loudon, G. M., 1984, Organic Chemistry, Addison-Wesley, Reading, MA.Google Scholar
  106. Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H., 1990, Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, DC.Google Scholar
  107. Mansoori, B. A., Johnston, M. V., and Wexler, A. S., 1994, Quantitation of ionic species in single microdroplets by on-line laser desorption/ionization, Anal. Chem. 66, 3681–3687.Google Scholar
  108. Markley, K. S., 1960, Fatty Acids: Their Chemistry, Properties, Production, and Uses. Part 1, Interscience, New York.Google Scholar
  109. Martin, L. R. and Damschen, D. E., 1981, Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ. 15, 1615–1621.Google Scholar
  110. Matthias-Maser, S. and Jaenicke, R., 1994, Examination of atmospheric bioaerosol particles with radii > 0.2 μm, J. Aerosol Sci. 25, 1605–1613.Google Scholar
  111. Mazurek, M., Mason-Jones, M. C., Mason-Jones, H. D., Salmon, L. G., Cass, G. R. Hallock, K. A., and Leach, M., 1996, visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: 1. Properties observed by high resolution gas chromatography. Submitted to J. Geophys. Res. Google Scholar
  112. Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1991, Biological input to visibility-reducing aerosol particles in the remote arid southwestern United States, Environ. Sci. Technol. 25, 684–694.Google Scholar
  113. Mazurek, M. A., Hallock, K., Molkenbur, C., Cass, G. R., Jones, M., Mason, H., and Winner, D., 1993, Organic compounds emitted in smoke aerosol from combustion of green vegetation and seasoned firewood at Grand Canyon National Park. Presented at the annual meeting of the American Association for Aerosol Research, October 11–15, Oakbrook, IL. Document No. BNL-48753, Brookhaven National Laboratory, Upton, NY.Google Scholar
  114. Mazurek, M. A., Simoneit, B. R. T., Cass, G. R., and Gray, H. A., 1987, Quantitative high-resolution gas chromatography/mass spectrometry analyses of carbonaceous fine aerosol particles, Intern. J. Environ. Anal. Chem. 29, 119–139.Google Scholar
  115. McMurry, P. H., Zhang, X., and Lee, C.-T., 1996, Issues in aerosol measurement for optical assessments, J. Geophys. Res. (in press).Google Scholar
  116. Meng, Z., Seinfeld, J. H., Saxena, P., and Kim, Y. P., 1995, Contribution of water to particulate mass in the South Coast Air Basin, Aerosol Sci. Technol. 22, 111–123.Google Scholar
  117. Mellan, I., 1962, Polyhydric Alcohols, Spartan Books, Washington, DC.Google Scholar
  118. Meylan, W. M. and Howard, P. H., 1991, Bond contribution method for estimating Henry's law constants, Environ. Toxicol. Chem. 10, 1283–1294.Google Scholar
  119. Milas, N. A., Kurz, P. F., and Anslow Jr., W. P., 1937, The photochemical addition of hydrogen peroxide to the double bond, J. Amer. Chem. Soc. 59, 543–544.Google Scholar
  120. Morrison, R. T. and Boyd, R. N., 1992, Organic Chemistry, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  121. Mueller, P. K., Fung, K. K., Heisler, S. L., Grosjean, D., and Hidy, G. M., 1982, Atmospheric particulate carbon observations in urban and rural areas of the United States, in G. T. Wolff and R. L. Klimisch (eds.), Particulate Carbon—Atmospheric Life Cycle, Plenum Press, New York, pp. 343–370.Google Scholar
  122. Mueller, P. K., Mosley, R. W., and Pierce, L. B., 1972, Chemical composition of Pasadena aerosol by particle size and time of day. IV. Carbonate and noncarbonate carbon content, J. Colloid Interface Sci. 39, 235–239.Google Scholar
  123. Muilenberg, M. L., 1995, The outdoor aerosol, in H. A. Burge (ed.), Bioaerosols, Lewis Publishers, Boca Raton, FL, pp. 163–204.Google Scholar
  124. Munz, C. and Roberts, P. V., 1986, The effects of solute concentration and cosolvents on the aqueous activity coefficients of halogenated hydrocarbons, Environ. Sci. Technol. 20, 830–836.Google Scholar
  125. Murphy, D. M. and Thompson, D. S., 1995, Laser ionization mass spectroscopy of single aerosol particles, Aerosol Sci. Technol. 22, 237–249.Google Scholar
  126. Myers, D., 1991, Surfaces, Interfaces, and Colloids. Principles and Applications, VCH Publ., New York.Google Scholar
  127. Nielsen, F., Olsen, E., and Fredenslund, A., 1994, Henry's Law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method, Environ. Sci. Technol. 28, 2133–2138.Google Scholar
  128. Novakov, T. and Penner, J. E., 1993, Large contribution of organic aerosols to cloud-condensationnuclei concentrations, Nature 365, 823–826.Google Scholar
  129. Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1993, Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene, Atmos. Environ. 27A, 1471–1477.Google Scholar
  130. Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1992, Fourier transform infrared analysis of aerosol formed in the photo-oxidation of isoprene and β-pinene, Atmos. Environ. 26A, 1239–1251.Google Scholar
  131. Pandis, S. N., Wexler, A. S., and Seinfeld, J. H., 1993, Secondary organic aerosol formation and transport-II. Predicting the ambient secondary organic aerosol size distribution, Atmos. Environ. 27A, 2403–2416.Google Scholar
  132. Pandis, S. N., Harley, R. A., Cass, G. R., and Seinfeld, J. H., 1992, Secondary organic aerosol formation and transport, Atmos. Environ. 26A, 2269–2282.Google Scholar
  133. Pankow, J. F., 1994a, An absorption model of the gas/aerosol partitioning of organic compounds in the atmosphere, Atmos. Environ. 28, 185–188.Google Scholar
  134. Pankow, J. F., 1994b, An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ. 28, 189–193.Google Scholar
  135. Pankow, J. F., 1987, Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere, Atmos. Environ. 21, 2275–2283.Google Scholar
  136. Pankow, J. F., Storey, J. M. E., and Yamasaki, H., 1993, Effects of relative humidity on gas/particle partitioning of semivolatile organic compounds to urban particulate matter, Environ. Sci. Technol. 27, 2220–2226.Google Scholar
  137. Perry, R. H. and Chilton, C. H., 1973, Chemical Engineers' Handbook, McGraw-Hill, New York.Google Scholar
  138. Popovych, O. and Tomkins, R. P. T., 1981, Nonaqueous Solution Chemistry, John Wiley & Sons, New York.Google Scholar
  139. Pryde, E. H. and Cowan, J. C., 1972, Aliphatic dibasic acids, in J. K. Stille and T. W. Campbell (eds.), Condensation Monomers, Wiley-Interscience, New York, pp. 1–153.Google Scholar
  140. Puxbaum, H. and Kunit, M., 1994, Determination of the cellulose content of atmospheric aerosols. Presented at the Fifth International Conference on Carbonaceous Particles in the Atmosphere, 23–26 August, Berkeley, CA.Google Scholar
  141. Raridon, R. J. and Kraus, K. A., 1971, Properties of mixtures. Activity coefficients of sodium chloride at saturation in aqueous solutions of some oxy-oxa compounds at 25°C, J. Chem. Eng. Data 16, 241–243.Google Scholar
  142. Reents Jr., W. D., Downey, S. W., Emerson, A. B., Mujsce, A. M., Muller, A. J., Siconolfi, D. J., Sinclair, J. D., and Swanson, A. G., 1995, Single particle characterization by time-of-flight mass spectrometry, Aerosol Sci. Technol. 23, 263–270.Google Scholar
  143. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., 1977, The Properties of Gases and Liquids, McGraw-Hill, New York.Google Scholar
  144. Renzetti, N. A. and Doyle, G. J., 1959, The chemical nature of the particulate in irradiated automobile exhaust, J. Air Pollut. Control Assoc. 8, 293–296.Google Scholar
  145. Robinson, R. A. and Stokes, R. H., 1968, Electrolyte Solutions, Butterworths, London, UK.Google Scholar
  146. Roedel, W., 1979, Meaurement of sulfuric acid saturation vapor pressure; implications for aerosol formation by heteromolecular nucleation, J. Aerosol Sci. 10, 375–386.Google Scholar
  147. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T., 1993a, Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ. 27A, 1309–1330.Google Scholar
  148. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1993b, Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks, Environ. Sci. Technol. 27, 636–651.Google Scholar
  149. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1993c, Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks, Environ. Sci. Technol. 27, 1892–1904.Google Scholar
  150. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1993d, Sources of fine organic aerosol. 4. Particulate abrasive products from leaf surfaces of urban plants, Environ. Sci. Technol. 27, 2700–2711.Google Scholar
  151. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T., 1991, Sources of fine organic aerosol. I. Charbroilers and meat cooking operations, Environ. Sci. Technol. 25, 1112–1125.Google Scholar
  152. Sanhueza, E., Santana, M., and Hermoso, M., 1992, Gas- and aqueous-phase formic and acetic acids at a tropical cloud forest site, Atmos. Environ., 26A, 1421–1426.Google Scholar
  153. Satsumabayashi, H., Kurita, H., Chang, Y.-S., Carmichael, G. R., and Ueda, H., 1995, Photochemical formations of lower aldehydes and lower fatty acids under long-range transport conditions in central Japan, Atmos. Environ. 29, 255–266.Google Scholar
  154. Saxena, P., Hildemann, L. M., McMurry, P. H., and Seinfeld, J. H., 1995, Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res. 100, 18755–18770.Google Scholar
  155. Schuetzle, D., 1975, Analysis of complex mixtures by computer controlled high resolution mass spectrometry. I-Application to atmospheric aerosol composition, Biomed. Mass Spectr. 2, 288–298.Google Scholar
  156. Schuetzle, D., Cronn, D., Crittenden, A. L., and Charlson, R. J., 1975, Molecular composition of secondary aerosol and its possible origin, Environ. Sci. Technol. 9, 838–845.Google Scholar
  157. Sebastiani, E. and Lacquaniti, L., 1967, Acetic acid-water system thermodynamical correlation of vapor-liquid equilibrium data, Chem. Eng. Sci. 22, 1155–1162.Google Scholar
  158. Seidell, A., 1941. Solubilities of Organic Compounds, D. Van Nostrand, New York.Google Scholar
  159. Seinfeld, J. H., 1986, Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, New York.Google Scholar
  160. Sempere, R. and Kawamura, K., 1994, Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere, Atmos. Environ. 28, 449–459.Google Scholar
  161. Serjeant, E. P. and Dempsey, B., 1979, Ionisation Constants of Organic Acids in Aqueous Solution, International Union of Pure and Applied Chemistry (IUPAC) Chemical Data Series No. 23, Pergamon Press, New York.Google Scholar
  162. Servant, J., Kouadio, G., Bernard, C., and Delmas, R., 1991. Carboxylic monoacids in the air of Mayombe Forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem. 12, 367–380.Google Scholar
  163. Shinoda, K., 1978, Principles of Solution and Solubility, Marcel Dekker, New York.Google Scholar
  164. Sigma, 1995, Biochemicals, Organic Compounds and Diagnostic Reagents for Research, Sigma Chemical Company, St. Louis, MO.Google Scholar
  165. Simoneit, B. R. T., 1986, Characterization of organic constituents in aerosols in relation to their origin and transport: A review, Int. J. Environ. Anal. Chem. 23, 207–237.Google Scholar
  166. Simoneit, B. R. T., Crisp, P. T., Mazurek, M. A., and Standley, L. J., 1991, Composition of extractable organic matter of aerosols from the Blue Mountains and southeast coast of Australia, Environ. Int. 17, 405–419.Google Scholar
  167. Simoneit, B. R. T., Sheng, G., Chen, X., Fu, J., Zhang, J., and Xu, Y., 1991, Molecular marker study of extractable organic matter in aerosols from urban areas of China, Atmos. Environ. 25A, 2111–2129.Google Scholar
  168. Simoneit, B. R. T. and Mazurek, M. A., 1982, Organic matter of the troposphere-II. Natural back-ground of biogenic lipid matter in aerosols over the rural western United States, Atmos. Environ. 16, 2139–2159.Google Scholar
  169. Singh, H. B., O'Hara, D., Herlth, D., Sachse, W., Blake, D. R., Bradshaw, J. D., Kanakidou, M., and Crutzen, P. J., 1994, Acetone in the atmosphere: distribution, sources and sinks, J. Geophys. Res. 99, 1805–1819.Google Scholar
  170. Sisler, J. F. and Malm, W. C., 1994, The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States, Atmos. Environ. 28, 851–862.Google Scholar
  171. Sloane, C. S., Watson, J., Chow, J., Pritchett, L., and Richards, L. W., 1991, Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver, Atmos. Environ. 25A, 1013–1024.Google Scholar
  172. Smith, J. M. and Van Ness, H. C., 1975, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, New York.Google Scholar
  173. Solomon, P. A., Fall, T., Salmon, L., Lin, P., Vasquez, F., and Cass, G. R., 1988, Acquisition of acid vapor and aerosol concentration data for use in dry deposition studies in the South Coast Air Basin. Vol. 1. Environmental Quality Laboratory, California Institute of Technology, Pasadena, CA.Google Scholar
  174. Stanley, T. W., Meeker, J. E., and Morgan, M. J., 1967, Extraction of organics from airborne particles-effects of various solvents and conditions on the recovery of benzo(a)pyrene, benz(c)acridine, and 7H-benz(de)anthracen-7-one, Environ. Sci. Technol. 1, 927–931.Google Scholar
  175. Stephen, H. and Stephen, T., 1963, Solubilities of Inorganic and Organic Compounds. Volume 1, Pergamon Press, London, UK.Google Scholar
  176. Storey, J. M. E. and Pankow, J. F., 1992, Gas-particle partitioning of semi-volatile organic compounds to model atmospheric particulate materials-I. Sorption to graphite, sodium chloride, alumina, and silica particles under low humidity conditions, Atmos. Environ. 26A, 435–443.Google Scholar
  177. Streitwieser Jr., A. and Heathcock, C. H., 1985, Introduction to Organic Chemistry, Macmillan, New York.Google Scholar
  178. Suleiman, D. and Eckert, C. A., 1994, Limiting activity coefficients of diols in water by a dew point technique, J. Chem. Eng. Data 39, 692–696.Google Scholar
  179. Suzuki, T., Ohtaguchi, K., and Koide, K., 1992, Application of principal components analysis to calculate Henry's constant from molecular structure, Computers Chem. 16, 41–52.Google Scholar
  180. Tang, I. N. and Munkelwitz, H. R., 1991, Determination of vapor pressure from droplet evaporation kinetics, J. Colloid Interface Sci. 141, 109–118.Google Scholar
  181. Tao, Y. and McMurry, P. H., 1989, Vapor pressures and surface free energies of C14−C18 monocarboxylic acids and C5 and C6 dicarboxylic acids, Environ. Sci. Technol. 23, 1519–1523.Google Scholar
  182. Thibodeaux, L. J., Nadler, K. C., Valsaraj, K. T., and Reible, D. D., 1991, The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols-competitive adsorption theory predictions, Atmos. Environ. 25A, 1649–1656.Google Scholar
  183. Tokos, J. J. S., Tanaka, S., Morikami, T., Shigetani, H., and Hashimoto, Y., 1992, Gaseous formic and acetic acids in the atmosphere of Yokohama, Japan, J. Atmos. Chem. 14, 85–94.Google Scholar
  184. Trivedi, B. C. and Culbertson, B. M., 1982, Maleic Anhydride, Plenum Press, New York.Google Scholar
  185. Turpin, B. J., Saxena, P., Allen, G., McMurry, P. H., Koutrakis, P., and Hildemann, L. M., 1996, Characterization of the southwestern desert aerosol, Meadview, AZ, J. Air Waste Manage Assoc. (in press).Google Scholar
  186. Turpin, B. J., Huntzicker, J. J., and Hering, S. V., 1994, Investigation of organic aerosol sampling artifacts in the Los Angeles Basin, Atmos. Environ. 28, 3061–3071.Google Scholar
  187. Valsaraj, K. T., Thoma, G. J., Reible, D. D., and Thibodeaux, L. J., 1993, On the enrichment of hydrophobic organic compounds in fog droplets, Atmos. Environ. 27A, 203–210.Google Scholar
  188. Vasconcelos, L. A. P., Macias, E. S., and White, W. H., 1994, Aerosol composition as a function of haze and humidity levels in the southwestern U. S., Atmos. Environ. 28, 3679–3691.Google Scholar
  189. Wang, S.-C., Paulson, S. E., Grosjean, D., Flagan, R. C., and Seinfeld, J. H., 1992, Aerosol formation and growth in atmospheric organic/NOx systems-I. Outdoor smog chamber studies of C7- and C8-hydrocarbons, Atmos. Environ. 26A, 403–420.Google Scholar
  190. Warner, J. and Warne, W. G., 1970, The effect of surface films in retarding the growth by condensation of cloud nuclei and their use in fog suppression, J. Appl. Meteorol. 9, 639–650.Google Scholar
  191. Wauters, E., Vangaever, E., Sandra, P., and Verzele, M., 1979, Polar organic fraction of air particulate matter, J. Chromatogr. 170, 125–131.Google Scholar
  192. Weast, R. C., 1986, Handbook of Chemistry and Physics, 67th edn, CRC Press, Boca Raton, FL.Google Scholar
  193. Went, F. W., 1960, Organic matter in the atmosphere, and its possible relation to petroleum formation, Proc. Natl. Acad. Sci. U.S.A., 46, 212–221.Google Scholar
  194. White, W. H., 1990, Contributions to light extinction, in Visibility: Existing and Historical Conditions: Causes and Effects. Acidic Deposition: State of Science Report 24, National Acid Precipitation Assessment Program, Washington, DC.Google Scholar
  195. Wiesen, E., Barnes, I., and Becker, K. H., 1995, Study of the OH-initiated degradation of the aromatic photooxidation product 3,4-dihydroxy-3-hexene-2,5-dione, Environ. Sci. Technol. 29, 1380–1386.Google Scholar
  196. Willey, J. D. and Wilson, C. A., 1993, Formic and acetic acids in atmospheric condensate in Wilmington, North Carolina, J. Atmos. Chem. 16, 123–133.Google Scholar
  197. Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K., and Jaeschke, W., 1988, Organic acid gas and liquid-phase measurements in Po Valley fall-winter conditions in the presence of fog, Tellus 40B, 348–357.Google Scholar
  198. Yaws, C. L., 1994, Handbook of Vapor Pressure, Volumes 1 & 2, Gulf Publ. Co., Houston, TX.Google Scholar
  199. Yokouchi, Y. and Ambe, Y., 1986, Characterization of polar organics in airborne particulate matter, Atmos. Environ. 20, 1727–1734.Google Scholar
  200. Yu, J., Jefferies, H. E., and Le Lacheur, R. M., 1995, Identifying airborne carbonyl compounds in isoprene atmospheric photooxidation products by their PFBHA oximes using gas chromatography/ion trap mass spectrometry, Environ. Sci. Technol. 29, 1923–1932.Google Scholar
  201. Zhang, J., He, Q., and Lioy, P. J., 1994, Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvironments, Environ. Sci. Technol. 28, 146–152.Google Scholar
  202. Zhang, X. Q., McMurry, P. H., Hering, S. V., and Casuccio, G. S., 1993, Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the Grand Canyon, Atmos. Environ. 27A, 1593–1607.Google Scholar
  203. Zhou, X. and Mopper, K., 1990, Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange, Environ. Sci. Technol. 24, 1864–1869.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Pradeep Saxena
    • 1
  • Lynn M. Hildemann
    • 1
  1. 1.Environmental and Water Studies Program, Department of Civil EngineeringStanford UniversityStanfordU.S.A.

Personalised recommendations