Journal of Atmospheric Chemistry

, Volume 4, Issue 3, pp 295–310

Termites and global methane—another assessment

  • P. J. Fraser
  • R. A. Rasmussen
  • J. W. Creffield
  • J. R. French
  • M. A. K. Khalil
Article

Abstract

New CH4 emission data from a number of Northern and Southern Hemispheric, tropical and temperate termites, are reported, which indicate that the annual global CH4 source due to termites is probably less than 15 Tg. The major uncertainties in this estimate are identified and found to be substantial. Nevertheless, our results suggest that termites probably account for less than 5% of global CH4 emissions.

Key words

Methane termites global methane budget 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, G., 1970, Rearing of termites and testing methods used in the laboratory, in Biology of Termites, Volume 1, K. Krishna and F. M. Weesner (eds.), (Academic Press, New York and London) pp. 351–385.Google Scholar
  2. Blake, D. R., Mayer, E. W., Tyler, S. C., Makida, Y., Montague, D. C., and Rowland, F. S., 1982, Global increase in atmospheric methane concentrations between 1978 and 1980, Geophys. Res. Lett. 9, 477–480.Google Scholar
  3. Bouillon, A., 1970, Termites of the Ethiopian region, in Biology of Termites, Volume 2, K. Krishna and F. M. Weesner (eds.), (Academic Press, New York and London) pp. 153–280.Google Scholar
  4. Breznak, J. A., 1975, Symbiotic relationships between termites and their intestinal microbiota, in Symposia of the Society for Experimental Biology, Number 29, Symbiosis, The Society for Experimental Biology, Cambridge University Press, 559–579.Google Scholar
  5. Collins, N. M. and Wood, T. G., 1984, Termites and atmospheric gas production, Science 224, 84–86.Google Scholar
  6. Creffield, J. W., Howick, C. D., and Pahl, P. J., 1985, Comparative wood consumption within and between mounds of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae). Sociobiology (in press).Google Scholar
  7. Crutzen, P. J. and Gidel, L. T., 1983, A two-dimensional photochemical model of the atmosphere, 2: the tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res. 88, 6641–6661.Google Scholar
  8. Day, M. F., 1938, Preliminary observations on the gaseous environment of Nasutitermes exitiosus (Hill) (Isoptera), J. Council Scientific Industrial Research 11, 317–327.Google Scholar
  9. Ehhalt, D. H. and Schmidt, V., 1978, Sources and sinks of atmospheric methane, Pure Appl. Geophys. 116, 452–463.Google Scholar
  10. Fraser, P. J., Khalil, M. A. K., Rasmussen, R. A., and Crawford, A. J., 1981, Trends of atmospheric methane in the southern hemisphere, Geophys. Res. Lett. 8, 1063–1066.Google Scholar
  11. Fraser, P. J., Khalil, M. A. K., Rasmussen, R. A., and Steele, L. P., 1984, Tropospheric methane in the mid-latitudes of the southern hemisphere, J. Atmospheric Chemistry 1, 125–135.Google Scholar
  12. Fraser, P. J., Hyson, P., Rasmussen, R. A. Crawford, A. J., and Khalil, M. A. K., 1986, Methane, carbon monoxide and methylchloroform in the southern hemisphere, J. Atmospheric Chemistry 4, 3–42.Google Scholar
  13. Gay, F. J. and Greaves, T., 1940, The population of a mound colony of Coptotermes lacteus (Froggatt). J. Council Scienctific Industrial Research 13, 145–149.Google Scholar
  14. Gay, F. J., Greaves, T., Holdaway, F. G., and Wetherly, 1955. Standard laboratory colonies of termites for evaluating the resistance of timber, timber preservatives, and other materials to termite attack, Bulletin No. 277, Commonwealth Scientific and Industrial Research Organization, Australia, pp. 60.Google Scholar
  15. Gay, F. J. and Calaby, J. H., 1970, Termites of the Australian region, in Biology of Termites, Volume 2, K. Krishna and F. M. Weesner (eds.), (Academic Press, New York and London) pp. 393–448.Google Scholar
  16. Harris, W. V., 1970, Termites of the Palearctic region, in Biology of Termites Volume 2, K. Krishna and F. M. Weesner (eds.), (Academic Press, New York and London) pp. 295–313.Google Scholar
  17. Howick, C. D. and Creffield, J. W., 1975, The development of a standard bioassay technique with Mastotermes darwiniensis (Froggatt) (Isoptera: Mastoterermitidae). Z. ang. Ent. 78, 126–138.Google Scholar
  18. Howick, C. D., Creffield, J. W., and Lenz, M., 1975, Field collection and laboratory maintenance of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae) for biological assessment studies, J. Aust. ent. Soc. 14, 155–160.Google Scholar
  19. Howick, C. D. and Creffield, J. W., 1979, A comparison of three species of Nasutitermes (Isoptera: Termitidae) as termites for laboratory bioassays, Int. Biodeterior. Bull. 15, 105–112.Google Scholar
  20. Howick, C. D. and Creffield, J. W., 1980, Intraspecific antagonism in Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) Bull. ent. Res. 70, 17–23.Google Scholar
  21. Haverty, M. I., 1976, Termites, Pest Control 44, 12–17.Google Scholar
  22. Johnson, G. C., Thornton, J. D., Creffield, J. W., and Howick, C. D., 1983, Natural durability studies in an Accelerated Field Simulation—a novel approach, Document No: IRG/WP/2197, IRG Secretariat, Drottming Kristinas väg 47C, S-114 28 Stockholm, Sweden.Google Scholar
  23. Khalil, M. A. K. and Rasmussen, R. A., 1983a, Sources, sinks and seasonal cycles of atmospheric methane, J. Geophysical Research 88, 5131–5144.Google Scholar
  24. Khalil, M. A. K. and Rasmussen, R. A., 1983b, Reply to Zimmerman and Greenberg, Nature 302, 354–355.Google Scholar
  25. Khalil, M. A. K. and Rasmussen, R. A., 1985, Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmospheric Environment 19, 397–407.Google Scholar
  26. Lee, K. E. and Wood, T. G., 1971, Termites and Soils (Academic Press, London and New York).Google Scholar
  27. Lenz, M., Ruyooka, D. B. A., and Howick, C. D., 1980, The effect of brown and white rot fungi on wood consumption and survival of Coptotermes lacteus (Froggatt) (Isoptera: Rhinotermitidae) in a laboratory bioassay. Z. ang. Ent. 89, 344–362.Google Scholar
  28. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1978, Atmospheric Chemistry: response to human influence, Phil. Trans. R. Soc. London, Ser. A. 290, 187–194.Google Scholar
  29. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: a global perspective, J. Geophysical Research 86, 7210–7254.Google Scholar
  30. Lüscher, M., 1961, Air-conditioned termite nests, Scientific American 205, 138–145.Google Scholar
  31. Noirot, C., 1970, The nests of termites, in Biology of Termites, Volume 2, K. Krishna and F. M. Weesner, eds. (Academic Press, New York and London) pp. 73–125.Google Scholar
  32. Owens, A. J., Hales, C. H., Filkin, D. L., Miller, C., Steed, J. M., and Jesson, J. P. 1985, Coupled one-dimensional radiative-convective, chemistry-transport model of the atmosphere 1. Model structure and steady state perturbation calculations, J. Geophysical Research 90, 2283–2311.Google Scholar
  33. Peakin, G. J. and Josens, G., 1978, Respiration and energy flow, in Production Ecology of Ants and Termites. International Biological Programme 13, M. V. Brian (ed.), (Cambridge University Press) pp. 111–163.Google Scholar
  34. Ramanathan, V., Cicerone, R. J., Singh, H. B. and Kiehl, J. T., 1985, Trace gas trends and their potential role in climatic change, J. Geophysical Research 90, 5547–5566.Google Scholar
  35. Rasmussen, R. A. and Khalil, M. A. K., 1981, Atmospheric methane (CH4): trends and seasonal cycles, J. Geophysical Research 86, 9826–9832.Google Scholar
  36. Rasmussen, R. A. and Khalil, M. A. K., 1983, Global production of methane by termites, Nature 301, 700–702.Google Scholar
  37. Rasmussen, R. A. and Khalil, M. A. K., 1984, Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient, J. Geophysical Research 89, 11599–11605.Google Scholar
  38. Seiler, W., Conrad, R., and Scharffe, D., 1984, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atmospheric Chemistry 1, 171–186.Google Scholar
  39. Sheppard, J. C., Westberg, H., Hooper, J. F., Gameson, K., and Zimmerman, P., 1982, Invento of global methane sources and their production rates, J. Geophysical Research 87, 1305–1312.Google Scholar
  40. Watson, J. A. L., Ruyooka, D. B. A., and Howick, C. D., 1978, The effect of caste composition on the feeding activity in laboratory groups of Nasutitermes exitiosis (Hill) (Isoptera: Termitidae), Bull. ent. Res. 68, 687–694.Google Scholar
  41. Weesner, F. M., 1970, Termites of the Nearctic region, in Biology of Termites Volume 2, K. Krishna and F. M. Weesner (eds.), (Academic Press, New York and London) pp. 477–525.Google Scholar
  42. Wood, T. G., 1978, Food and feeding habits of termites, in Production Ecology of Ants and Termites, International Biological Programme 13, M. V. Brian (ed.), (Cambridge University Press) pp. 55–80.Google Scholar
  43. Wood, T. G. and Sands, W. A., The role of termites in ecosystems, in Production Ecology of Ants and Termites, International Biological Programme 13, M. V. Brian (ed.), (Cambridge University Press, 1978) pp. 245–292.Google Scholar
  44. Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O., and Crutzen, P. J., 1982, Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen, Science 218, 563–565.Google Scholar
  45. Zimmerman, P. R. and Greenberg, J. P., 1983, Termites and methane, Nature 302, 354.Google Scholar
  46. Zimmerman, P. R., Greenberg, J. P., and Darlington, J. P. E. C., 1984, Reply to Collins and Wood, Science 224, 86.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • P. J. Fraser
    • 1
  • R. A. Rasmussen
    • 2
  • J. W. Creffield
    • 3
  • J. R. French
    • 3
  • M. A. K. Khalil
    • 2
  1. 1.CSIRO Division of Atmospheric ResearchMordiallocAustralia
  2. 2.Department of Environmental ScienceOregon Graduate CenterBeavertonU.S.A.
  3. 3.CSIRO Division of Chemical and Wood TechnologyHighettAustralia

Personalised recommendations