Journal of Atmospheric Chemistry

, Volume 4, Issue 1, pp 3–42 | Cite as

Methane, carbon monoxide and methylchloroform in the southern hemisphere

  • P. J. Fraser
  • P. Hyson
  • R. A. Rasmussen
  • A. J. Crawford
  • M. A. K. Khalil
Scientific Application of Baseline Observations of a Atmospheric Composition (SABOAC) Part 2

Abstract

New observational data on CH4, CO and CH3CCl3 in the southern hemisphere are reported. The data are analysed for long term trends and seasonal cycles. CH3CCl3 data are used to scale the OH fields incorporated in a two dimensional model, which in turn, is used to constrain the magnitude of a global CH4 source function. The possible causes of observed seasonality of CH3CCl3, CH4 and CO are identified, and several other aspects of observed CH4 variability are discussed.

Possible future research directions are also given.

Keywords

Methane methylchloroform carbon monoxide Southern Hemisphere trends seasonal cycles hydroxyl radical tow dimensional model methane source function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beardsmore, D. J., Pearman, G. I., Fraser, P. J. B. and O'Toole, J. G., 1978, The CSIRO (Australia) Atmospheric Carbon Dioxide Monitoring Program: the First Six Years of Data, CSIRO Division of Atmospheric Physics Technical Paper No. 35, 72pp.Google Scholar
  2. Beardsmore, D. J., Pearman, G. I. and O'Brien, R. C., 1984, The CSIRO (Australia) Atmospheric Carbon Dioxide Monitoring Program: Surface Data, CSIRO Division of Atmospheric Research Technical Paper No. 6, 115pp.Google Scholar
  3. Blake, D.R., Mayer, E.W., Tyler, S.C., Makide, Y., Montague, D.C. and Rowland, F.S., 1982, Global increase in atmospheric methane concentrations between 1978 and 1980, Geophys. Res. Lett. 9, 477–480.Google Scholar
  4. Blake, D.R., 1984, Increasing concentrations of atmospheric methane, 1979–1983, Ph.D. thesis, University of California, Irvine.Google Scholar
  5. Burnett, C.R. and Burnett, E.B., 1984, Observational results on the vertical column abundance of atmospheric hydroxyl: description of its seasonal behaviour 1977–1982 and the 1982 E1 Chichon perturbation. J. Geophys. Res. 89, 9603–9611.Google Scholar
  6. CMA, 1983, World Production and Release of chlorofluorocarbons 11 and 12 through 1982, Chemical Manufacturers Association, Fluorocarbon Program Panel.Google Scholar
  7. Crutzen, P.J., 1982, The global distribution of hydroxyl, in E.D.Goldberg (ed.), Atmospheric Chemistry, Springer-Verlag, Berlin, pp. 313–328.Google Scholar
  8. Crutzen, P.J. and Gidel, L.T., 1983, A two-dimensional photochemical model of the atmosphere, 2: the tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOX sources on tropospheric ozone, J. Geophys. Res. 88, 6641–6661.Google Scholar
  9. Crutzen, P.J. and Schmailzl, 1983, Chemical budgets of the stratosphere, Planet. Space Sci. 31, 1009–1032.Google Scholar
  10. Cunnold, D.M., Prinn, R.G., Rasmussen, R.A., Simmonds, P.G., Alyea, F.N., Cardelino, C.A., Crawford, A.J., Fraser, P.J., and Rosen, R.D., 1983, The Atmospheric Lifetime Experiment, 3. Lifetime methodology and application to three years of CFCl3 data, J. Geophys. Res. 88, 8379–8400.Google Scholar
  11. DeMore, W.B., Watson, R.T., Golden, D.M. Hampson, R.F., Kurylo, M., Howard, C.J., Molina, M.J. and Ravishankara, A.R., 1982, Chemical Kinetics and Photochemical Data for use in Stratospheric Modelling, Evaluation Number 5, NASA/JPL, JPL Publication 82-57, pp. 185.Google Scholar
  12. Dianov-Klokov, V.I., Fokeyeva, Ye.V. and Yunganov, L.N., 1978, Izv, Atm. Ocean. Phys. 14, 263–270.Google Scholar
  13. Dopplick, T.G., 1972, Radiative heating of the global atmosphere, J. Atmos. Sci. 29, 1278–1294.Google Scholar
  14. Duce, R.A., Cicerone, R., Davis, D., Delwiche, C.C., Dickinson, R., Harriss, R., Hicks, B., Lenschow, D., Levy, H., Liu, S., McElroy, M., Mohnen, V., Niki, H. and Prospero, J., 1984, Global Tropospheric Chemistry — A Plan for Action, National Academy Press, Washington, D.C.Google Scholar
  15. Ehhalt, D.H. and Schmidt, V., 1978, Sources and sinks of atmospheric methane, Pure Appl. Geophys. 116, 452–463.Google Scholar
  16. Fishman, J. and Carney, T.A., 1984, A one-dimensional photochemical model of the tropospher with planetary boundary-layer parameterization, J. Atmospheric Chemistry, 1, 351–376.Google Scholar
  17. Francey, R.J., Barbetti, M.m Bird, T., Beardsmore, D., Coupland, W., Dolezal, D.E., Farquhar, G.D., Flynn, R.G., Fraser, P.J., Gifford, R.M., Goodman, H.S., Kunda, B., McPhail, S., Nanson, G., Pearman, G.I., Richards, N.G., Sharkey, T.D., Temple, R.B. and Weir, B., 1984, Isotopes in Tree rings, Division of Atmospheric Research Technical Paper No. 4, 86 pp.Google Scholar
  18. Fraser, P.J., Khalil, M.A.K., Rasmussen, R.A. and Crawford, A.J., 1981, Trends of atmospheric methane in the southern hemisphere, Geophys. Res. Lett. 8, 1063–1066.Google Scholar
  19. Fraser, P.J., 1982, The Atmospheric Lifetime Experiment, The Analyser No. 8, 2–3.Google Scholar
  20. Fraser, P.J., Hyson, P., Enting, E.G. and Pearman, G.I., 1983, Global distribution & southern hemisphere trends of atmopheric CCl3F, Nature 302, 692–695.Google Scholar
  21. Fraser, P.J., 1984, Atmospheric methane and carbon monoxide observations at Cape Grim, Tasmania, in R.J. Francey (ed.), Baseline 1981–1982, Department of Science and Technology/CSIRO, 25–36.Google Scholar
  22. Fraser, P.J., Khalil, M.A.K., Rasmussen, R.A., and Steele, L.P., 1984, Tropospheric methane in the mid-latitudes of the southern hemisphere, J. Atmospheric Chemistry, 1, 125–135.Google Scholar
  23. Fraser, P.J., Derek, N., O'Brien, R., Shepherd, R., Rasmussen, R.A., Crawford, A.J. and Steele, L.P., 1985, Intercomparison of halocarbon and nitrous oxide measurements at Cape Grim, 1976–1984, in R.J. Francey and B. Forgan (eds), Baseline 1983–1984, Department of Science and Technology/CSIRO, in press.Google Scholar
  24. Golombek, A., 1982, A global three-dimensional model of the circulation and chemistry of long-lived atmospheric species, Ph.D. thesis, MIT, Cambridge.Google Scholar
  25. Hameed, S. and Cess, R.D., 1983, Impact of a global warming on biospheric sources of methane and its climatic consequences, Tellus 35B, 1–7.Google Scholar
  26. Harriss, R.C., Sebacher, D.I. and Day, F.P., 1982, Methane flux in the Great Dismal Swamp, Nature 247, 673–674.Google Scholar
  27. Hübler, G., Perner, D., Platt, V., Tönnisen, A. And Ehhalt, R.H., 1984, Ground level OH radical concentration: new measurements by optical absorption, J. Geophys. Res. 89, 1309–1319.Google Scholar
  28. Hyson, P., Fraser, P.J. and Pearman, G.I., 1980, A two-dimensional transport simulation model for trace atmospheric constituents, J. Geophys. Res. 85, 4443–4445.Google Scholar
  29. Keller, M., Goreau, T.J., Wofsy, S.C., Kaplan, W.A. and McElroy, M.B., 1983, Production of nitrous oxide and consumption of methane by forest soils, Geophys. Res. Lett. 10, 1156–1159.Google Scholar
  30. Khalil, M.A.K. and Rasmussen, R.A., 1981, Increases in atmospheric concentrations of halocarbons and nitrous oxide, in J.J. DeLuisi (ed.), Geophysical Monitoring for Climate Charge No. 9 Summary Report 1980, US Department of Commerce, NOAA/ERL, 134–139.Google Scholar
  31. Khalil, M.A.K. and Rasmussen, R.A., 1983, Sources, sinks, and seasonal cycles of atmospheric methane, J. Geophys. Res. 88, 5131–5144.Google Scholar
  32. Khalil, M.A.K. and Rasmussen, R.A., 1984a, Carbon monoxide in the earth's atmosphere: increasing trend, Science 224, 54–56.Google Scholar
  33. Khalil, M.A.K. and Rasmussen, R.A., 1984b, The atmospheric lifetime of methylchloroform (CH3CCl3), Tellus 36B, 317–332.Google Scholar
  34. Khalil, M.A.K. and Rasmussen, R.A., 1984c, Methylchloroform: global distribution, seasonal cycles, and anthropogenic chlorine, Chemosphere 13, 789–800.Google Scholar
  35. Khalil, M.A.K. and Rasmussen, R.A., 1984d, Variability of methane and carbon monoxide at the South Pole, Antarctic J. of United States, 1984 Review, 19, 204–206.Google Scholar
  36. Levy, H., 1971, Normal atmosphere: large radical and formaldehyde concentrations predicted, Science 173, 141–143.Google Scholar
  37. Logan, J.A., Prather, M.J., Wofsy, S.C. and McElroy, M.B., 1981, Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 7210–7254.Google Scholar
  38. Lovelock, J.E., 1977, Methylchloroform in the troposphere as an indicator of OH radical abundance, Nature 267, 32.Google Scholar
  39. Mayer, E.W., Blake, D.R., Tyler, S.C., Makide, Y., Montague, D.C. and Rowland, F.S., 1982, Methane interhemispheric concentration gradient and atmospheric residence time, Proc. Natl, Acad. Sci. USA 79, 1366–1370.Google Scholar
  40. Oort, A.H. and Rasmusson, E.M., 1971, Atmospheric Circulation Statistics, NOAA Professional Paper Number 5, US Department of Commerce, 323pp.Google Scholar
  41. Pearman, G.I., Beardsmore D.J. and O'Brien, R.C., 1983a, The CSIRO (Australia) Atmospheric Carbon Dioxide Monitoring Program: Ten Years of Aircraft Data, CSIRO Division of Atmospheric Physics Technical Paper No. 45, 113 pp.Google Scholar
  42. Pearman, G.I. and Hyson, P., 1985, Global transport and inter-reservoir exchange of carbon dioxide with particular reference to effects on concentration and stable isotope distributions. J. Atmospheric Chemistry, in press.Google Scholar
  43. Pearman, G.T., Hyson, P. and Fraser, P.J., 1983b, The global distribution of atmospheric carbon dioxide: 1. Aspects of observations and modelling, J. Geophys. Res. 88, 3581–3590.Google Scholar
  44. Pinto, J.P., Yung, Y.L., Rind, D., Russell, G.L., Lerner, J.A., Hansen, J.E., and S.Hameed, 1983, A general circulation model study of atmospheric carbon monoxide, J. Geophys. Res. 88, 3691–3702.Google Scholar
  45. Prinn, R.G., Rasmussen, R.A., Simmonds, P.G., Alyea, F.N., Cunnold, D.M., Lane, B.C., Cardelino, C.A. and Crawford, A.J., 1983a, The Atmospheric Lifetime Experiment, 5. Results for CH3CCl3 based on three years of data, J. Geophys. Res. 88, 8415–8426.Google Scholar
  46. Prinn, R.G., Simmonds, P.G., Rasmussen, R.A., Rosen, R.D., Alyea, F.N., Cardelino, C.A., Crawford, A.J., Cunnold, D.M., Fraser, P.J. and Lovelock, J.E., 1983b, The Atmospheric Lifetime Experiment, 1. Introduction, instrumentation and overview, J. Geophys. Res. 88, 8353–8367.Google Scholar
  47. Ramanathan, V., Cicerone, R.J., Singh, H.B. and Kiehl, J.T., 1985, Trace gas trends and their potential role in climatic change, J. Geophys. Res. 90, 5547–5566.Google Scholar
  48. Rasmussen, R.A. and Khalil, M.A.K., 1981, Atmospheric methane (CH4): trends and seasonal cycles. J. Geophys. Res. 86, 9826–9832.Google Scholar
  49. Rasmussen, R.A. and Khalil, M.A.K., 1982a, Atmospheric trace gases and Artic Haze at BRW, in B.A. Bodhaine and J.M. Harris (eds.), Geophysical Monitoring for Climatic Change No. 10 Summary Report 1981, US Department of Commerce, NOAA/ERL, 114–120.Google Scholar
  50. Rasmussen, R.A. and Khalil, M.A.K., 1982b, Latitudinal distributions of trace gases in and above the boundary layer, Chemosphere 11, 227–235.Google Scholar
  51. Rasmussen, R.A. and Lovelock, J.E., 1983, The Atmospheric Lifetime Experiment, 2. Calibration, J. Geophys. Res. 88, 8369–8378.Google Scholar
  52. Robinson, E., Bamesberger, W.L., Menzia, F.A., Waylett, A.S. and Waylett, S.F., 1984a, Atmospheric trace gas measurements at Palmer Station, Antarctica: 1982–83, J. Atmospheric Chemistry 2, 65–81.Google Scholar
  53. Robinson, E., Clark, P. and Seiler, W., 1984b, The latitudinal distribution of carbon monoxide across the Pacific from California to Antarctica, J. Atmospheric Chemistry 1, 137–149.Google Scholar
  54. Rowland, F.S. and Molina, M.J., 1975, Chlorofluoromethane in the environment, Reviews of Geophysics and Space Physics 13, 1–85.Google Scholar
  55. Sheppard, J.C., Westberg, H., Hopper, J.F., Ganesan, K. and Zimmerman, P., 1982, Inventory of global methane sources and their production rates, J. Geophys. Res. 87, 1305–1312.Google Scholar
  56. Seiler, W. and Fishman, J., 1981, The distribution of carbon monoxide and ozone in the free troposphere. J. Geophys. Res. 86, 7255–7265.Google Scholar
  57. Seiler, W., Giehl, H., Burke, E.-G. and Halliday, E., 1984, The seasonality of CO abundance in the southern hemisphere, Tellus 36B, 219–231.Google Scholar
  58. Steele, L.P., Fraser, P.J., Rasmussen, R.A., Khalil, M.A.K., Conway, T.J., Crawford, A.J., Gammon, R.H., Masarie, K.A. and Thoning, K.W., 1985, The global distribution of methane in the troposphere, J. Atmospheric Chemistry, in press.Google Scholar
  59. Stevens, C.M., Krout, L., Walling, Dr., Venters, A., Engelkemeir, A. and Ross, L.E., 1972, Isotopic composition of atmospheric carbon monoxide, Earth Planet. Sci. Lett. 16, 147–165.Google Scholar
  60. Volz, A., Ehhalt, D.H. and Derwent, R.G., 1981, Seasonal and latitudinal variation of 14CO and the tropospheric concentration of OH radicals, J. Geophys. Res. 86, 5163–5171.Google Scholar
  61. Weinstock, B. and Niki, H., 1972, Carbon monoxide balance in nature, Science 176, 290–292.Google Scholar
  62. Wofsy, S.C., 1976, Interactions of CH4 and CO in the earth's atmosphere, Ann. Rev. Earth Planet. Sci. 4, 442–469.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • P. J. Fraser
    • 1
  • P. Hyson
    • 1
  • R. A. Rasmussen
    • 2
  • A. J. Crawford
    • 2
  • M. A. K. Khalil
    • 2
  1. 1.Division of Atmospheric ResearchCSIROAspendaleAustralia
  2. 2.Department of Chemical, Biological, and Environmental SciencesOregon Graduate CenterBeavertonUSA

Personalised recommendations