Journal of Atmospheric Chemistry

, Volume 15, Issue 1, pp 79–95

Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies

  • Jost Kames
  • Ulrich Schurath
Article

Abstract

Henry's law coefficients of 15 alkyl nitrates, keto-, hydroxy-, and dinitrates of atmospheric interest have been measured, mostly over the temperature range 1–25°C. The compounds are stable in aqueous solution. Where literature data were available, Henry's law coefficients are in very good agreement. It is concluded that dissolution in cloud and rain water is not an important loss process for alkyl mononitrates in the atmosphere. The residence times of the more soluble bifunctional organic nitrates, however, are significantly affected or even controlled by washout and rainout. Gas chromatographic analysis of bifunctional nitrates in preconcentrated atmospheric samples may be adversely affected by the adsorptive properties of these compounds.

Key words

Organic nitrates hydroxy nitrates dinitrates nitrooxy acetone Henry's law constants hydrolysis rates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, E., 1988, Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres, Nature 331, 426–428.Google Scholar
  2. Atlas, E. and Schauffler, S., 1991, Analysis of alkyl nitrates and selected halocarbons in the ambient atmosphere using a charcoal preconcentration technique, Environ. Sci. Technol. 25, 61–67.Google Scholar
  3. Barnes, I., Bastian, V., Becker, K. H., and Zhu, Tong, 1990, Kinetics and Products of the Reactions of NO3 with Monoalkenes, Dialkenes, and Monoterpenes, J. Phys. Chem. 94, 2413–2419.Google Scholar
  4. Becker, K. H. and Wirtz, K., 1989, Gas phase reactions of alkyl nitrates with hydroxyl radicals under tropospheric conditions in comparison with photolysis, J. Atmos. Chem. 9, 419–433.Google Scholar
  5. Bollinger, M. J., Sievers, R. E., Fahey, D. W., and Fehsenfeld, F. C., 1983, Conversion of nitrogen dioxide, nitric acid and n-propyl nitrate by gold-catalyzed reduction with carbon monoxide, Anal. Chem. 55, 1980–1986.Google Scholar
  6. Bottenheim, J. W., Gallant, A. G., and Brice, K. A., 1986, Measurements of NOyspecies and O3 at 82° N latitude, Geophys. Res. Lett. 13, 113–116.Google Scholar
  7. Buhr, M. P., Parrish, D. D., Norton, R. B., Fehsenfeld, F. C., and Sievers, R. E., 1990, Contribution of organic nitrates to the total reactive nitrogen budget at a rural eastern U.S. site, J. Geophys. Res. 95, 9809–9816.Google Scholar
  8. Carter, W. P. L. and Atkinson, R., 1989, Alkyl nitrate formation from the atmospheric photooxidation of alkanes; a revised estimation method, J. Atmos. Chem. 8, 165–173.Google Scholar
  9. Cox, R. A. and Roffey, M. J., 1977, Thermal decomposition of peroxyacetyl nitrate in the presence of nitric oxide, Environ. Sci. Technol. 11, 900–906.Google Scholar
  10. Darnall, K. R., Carter, W. P. L., Winer, A. M., Lloyd, A. C., and Pitts, J. N., 1976, Importance of RO2+NO in alkyl nitrate formation from C4−C6 alkane photooxidations under simulated atmospheric conditions, J. Phys. Chem. 80, 1948–1950.Google Scholar
  11. Flocke, F., Volz-Thomas, A., and Kley, D., 1991, Measurements of alkyl nitrates in rural and polluted air masses, Atmos. Environ. 25A, 1951–1960.Google Scholar
  12. Glavas, S. and Schurath, U., 1985, Peroxyacetyl nitrate forming potential of five prototype hydrocarbons, Environ. Sci. Technol. 19, 950–955.Google Scholar
  13. Hjorth, J., Lohse, C., Nielsen, C. J., Skov, H., and Restelli, G., 1990, Products and mechanism of the gas-phase reactions between NO3 and a series of alkenes. J. Phys. Chem. 94, 7494–7500.Google Scholar
  14. Kames, J., Schweighoefer, S., and Schurath, U., 1991. Henry's law constant and hydrolysis of peroxy-acetyl nitrate (PAN), J. Atmos. Chem. 12, 169–180.Google Scholar
  15. Luke, W. T., Dickerson, R. R., and Nunnermacker, L. J., 1989, Direct measurements of the photolysis rate coefficients and Henry's law constants of several alkyl nitrates, J. Geophys. Res. 94, 14,905–14,921.Google Scholar
  16. Ridley, B. A., 1991, Recent measurements of oxidized nitrogen compounds in the troposphere, Atmos. Environ. 25A, 1905–1926.Google Scholar
  17. Ridley, B. A., Shetter, J. D., Walega, J. G., Madronich, S., Elsworth, C. M., Grahek, F. E., Fehsenfeld, F. C., Norton, R. B., Parrish, D. D., Hübler, G., Buhr, M., Williams, E. J., Allwine, E. J., and Westberg, H. H., 1990, The behaviour of some organic nitrates at Boulder and Niwot Ridge, Colorado, J. Geophys. Res. 95, 13,949–13,961.Google Scholar
  18. Roberts, J. M., 1990, The atmospheric chemistry of organic nitrates, Atmos. Environ. 24A, 243–287.Google Scholar
  19. Robertson, R. E., Kalvelil, M. K., Annessa, A., Ong, I. N., Scott, J. M. W., and Blandamer, M. J., 1981, Kinetics of solvolysis in water of four secondary alkyl nitrates, Can. J. Chem. 60, 1780–1785.Google Scholar
  20. Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in W.Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, Springer, Berlin, 1986, pp. 415–471.Google Scholar
  21. Shepson, P. B., Edney, E. O., Kleindienst, T. E., Pittman, J. H., Namie, G. R., and Cupitt, L. T., 1985, The production of organic nitrates from hydroxyl and nitrate radical reaction with propylene, Environ. Sci. Technol. 19, 849–854.Google Scholar
  22. Singh, H. B., 1987, Reactive nitrogen in the troposphere, Environ. Sci. Technol. 21, 320–327.Google Scholar
  23. Snider, J. R. and Dawson, G. A., 1985, Tropospheric light alcohols, carbonyls, and acetonitrile: concentrations in the Southwestern United States and Henry's law data. J. Geophys. Res. 90, 3797–3805.Google Scholar
  24. Urbański, T., 1965, Chemistry and Technology of Explosives, Vol. 2, Pergamon Press, Oxford, 1965 (Reprint 1983).Google Scholar
  25. Walcek, C. J. and Pruppacher, H. R., 1984a, On the scavenging of SO2 by cloud and raindrops: I. A theoretical study of SO2 absorption and desorption for water drops in air, J. Atmos. Chem. 1, 269–289.Google Scholar
  26. Walcek, C. J., and Pruppacher, H. R., 1984b, On the scavenging of SO2 by cloud and raindrops: III. A theoretical study of SO2 washout by rain falling through a pollution plume, J. Atmos. Chem. 1, 307–324.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Jost Kames
    • 1
  • Ulrich Schurath
    • 1
  1. 1.Institut für Physikalische und TheoretischeChemie der Universität BonnBonn 1Germany

Personalised recommendations