International Journal of Fracture

, Volume 63, Issue 1, pp 27–57 | Cite as

A continuum mechanics approach to some problems in subcritical crack propagation

  • Francesco Costanzo
  • David H. Allen


The results of the so-called energetic approach to fracture for the cases of a sharp crack without and with a cohesive zone are briefly reviewed with particular attention to the crack tip singularity analysis and to the issue of energy dissipation due to crack propagation. The case of a crack with a cohesive zone removing all thermomechanical singularities is then further analyzed, focusing the attention on the question of the thermodynamic admissibility of subcritical crack growth, and on some of the hypotheses that lead to the derivation of subcritical crack growth laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.


Mechanical Engineer Singularity Analysis Civil Engineer Energy Dissipation Cohesive Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Paris, in Fatigue Thresholds, J. Backlund, A.F. Blom and C.J. Beevers (eds.), Chamelem, London, 1 (1982) 3–10.Google Scholar
  2. 2.
    P.C. Paris, The Growth of Cracks Due to the Variations in Loads, Ph.D. thesis, Lehigh University, Bethlehem, Pa. (1962).Google Scholar
  3. 3.
    P.C. Paris and F. Erdogan, Journal of Basic Engineering 85 (1963) 528–534.Google Scholar
  4. 4.
    N.E. Frost and J.R. Dixon, International Journal of Fracture Mechanics 3 (1967) 301–306.Google Scholar
  5. 5.
    F.A. McClintock, in Fracture of Solids, John Wiley & Sons (1963) 65–102.Google Scholar
  6. 6.
    J.R. Rice, in Fatigue Crack Propagation, ASTM STP 415 (1967) 247–309.Google Scholar
  7. 7.
    J. Weertman, in Fatigue and Microstructure, American Society of Metals, Metals Park, Ohio (1979) 279–306.Google Scholar
  8. 8.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Enginnering Materials, John Wiley & Sons (1976).Google Scholar
  9. 9.
    M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press (1985).Google Scholar
  10. 10.
    E.H. Andrews, Fracture In Polymers, Aberdeen University Press (1968).Google Scholar
  11. 11.
    R.W. Herzberg and J.A. Mason, Fatigue of Engineering Plastics, Academic Press (1980).Google Scholar
  12. 12.
    J.G. Williams, Fracture Mechanics of Polymers, Ellis Horwood Lim. (1987).Google Scholar
  13. 13.
    A.J. Kinloch and R.J. Young, Fracture Behavior of Polymers, Elsevier Applied Science (1983).Google Scholar
  14. 14.
    K. Masaki, in Superalloy, Supercomposites and Superceramics, J.K. Tien and T. Canlfield (eds.), Academic Press (1989) 413–437.Google Scholar
  15. 15.
    G.P. Cherepanov, International Journal of Solids and Structures 4 (1968) 811–831.Google Scholar
  16. 16.
    Y. Izumi, M.E. Fine and T. Mura, International Journal of Fracture 17 (1981) 15–25.Google Scholar
  17. 17.
    A. Chudnovsky, V. Dunaevsky and V. Khandogin, Archives of Mechanics 30 (1978) 165–174.Google Scholar
  18. 18.
    A. Chudnovsky, Crack Layer Theory, NASA CR-174634 (1984).Google Scholar
  19. 19.
    J.S. Short and D.W. Hoeppner, Engineering Fracture Mechanics 33 (1989) 175–184.Google Scholar
  20. 20.
    A.A. Griffith, Philosophical Transaction of The Royal Society of London, A221 (1921) 163–197.Google Scholar
  21. 21.
    G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill (1979).Google Scholar
  22. 22.
    J.R. Rice, in Fracture, 2, Academic Press (1968) 191–311.Google Scholar
  23. 23.
    J.R. Rice, Journal of Mechanics and Physics of Solids 26 (1978) 61–78.Google Scholar
  24. 24.
    M.E. Gurtin, Journal of Elasticity 9 (1979) 187–195.Google Scholar
  25. 25.
    M.E. Gurtin, International Journal of Solids and Structures 15 (1979) 553–560.Google Scholar
  26. 26.
    M.E. Gurtin, Zeitschirift für Angewandte Mathematik und Physik (ZAMP) 30 (1979) 991–1003.Google Scholar
  27. 27.
    Q.S. Nguyen, in Variational Methods in the Mechanics of Solids, IUTAM Symposium, Evanston, Pergamon Press (1980) 254–259.Google Scholar
  28. 28.
    Q.S. Nguyen, Journal de Mécanique 19 (1980) 363–386.Google Scholar
  29. 29.
    Q.S. Nguyen, in Three-Dimensional Constitutive Relations and Ductile Fracture, IUTAM Symposium, Dourdan, North-Holland (1980) 315–330.Google Scholar
  30. 30.
    Q.S. Nguyen, Journal de Mécanique Théorique Appliqué 3 (1984) 41–61.Google Scholar
  31. 31.
    Q.S. Nguyen, Comptes Rendus De l'Académie Des Sciences, Série II 300, Paris (1985) 191–194.Google Scholar
  32. 32.
    Q.S. Nguyen, Comptes Rendus De l'Académie Des Sciences, Série II 301, Paris (1985) 567–570.Google Scholar
  33. 33.
    B.D. Coleman and M.E. Gurtin, The Journal of Chemical Physics 17 (1967) 597–613.Google Scholar
  34. 34.
    P. Germain, Q.S. Nguyen and P. Suquet, Journal of Applied Mechanics 50 (1983) 1010–1020.Google Scholar
  35. 35.
    J.R. Rice, in Proceedings of the First International Conference on Fracture, Japanese Society of Strength and Fracture of Materials, Tokyo (1966) 309–340.Google Scholar
  36. 36.
    A.P. Kfouri and J.R. Rice, in Fracture 1977, 1, ICF4, Waterloo, Canada (1977) 43–59.Google Scholar
  37. 37.
    L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Series in Engineering of The Physical Science (1969).Google Scholar
  38. 38.
    C. Trusdell and R.A. Toupin, in Handbuch Der Physik, III-1, Springer-Verlag (1960) 226–793.Google Scholar
  39. 39.
    M.F. McCarthy, in Continuum Physics, II, E.C. Eringen (ed.), Academic Press (1975) 449–521.Google Scholar
  40. 40.
    Q.S. Nguyen and C. Stolz, Comptes Rendus De L'Académie Des Sciences, Série II 301, Paris (1985) 661–664.Google Scholar
  41. 41.
    J-C Michel and Q.S. Nguyen, Comptes Rendus De L'Académie Des Sciences, Série II 304, Paris (1987) 1029–1032.Google Scholar
  42. 42.
    H.D. Bui, A. Ehrlacher and Q.S. Nguyen, Comptes Rendus De L'Académie Des Sciences, Série II 289, Paris (1979) 221–215.Google Scholar
  43. 43.
    J.C. Sung and J.D. Achenbach, Journal of Thermal Stresses 10 (1987) 243–262.Google Scholar
  44. 44.
    E. Stenberg, Loss of Ellipticity in The Small Scale Nonlinear Mode III Problem: Pilot Example, Ecoles E.D.F.-C.E.A.-I.N.R.I.A., Paris (1983).Google Scholar
  45. 45.
    A.P. Kfouri, International Journal of Fracture 15 (1979) 23–29.Google Scholar
  46. 46.
    D.S. Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100–104.Google Scholar
  47. 47.
    G.I. Barenblatt, Advances in Applied Mechanics 7 (1962) 55–129.Google Scholar
  48. 48.
    A.S. Krausz and H. Eyring, Deformation Kinetics, John Wiley & Sons (1975).Google Scholar
  49. 49.
    M.B. Bever, D.L. Holt and A.L. Titchener, The Stored Energy of Cold Work, Progress in Material Science, 17, B. Chalmers, J.W. Christian and T.B. Massalski (eds.), Pergamon Press (1973).Google Scholar
  50. 50.
    H.E. Exner and E. Arzt, in Physical Metallurgy, R.W. Cahn and P. Haasen (eds.), Elsevier Science Publishers (1983) 1885–1912.Google Scholar
  51. 51.
    M.E. Gurtin and A. Struthers, Archive for Rational Mechanics and Analysis 112 (1990) 97–160.Google Scholar
  52. 52.
    B.D. Colemann and W. Noll, Archive for Rational Mechanics and Analysis 13 (1963) 167–178.Google Scholar
  53. 53.
    T. Fett and D. Munz, Journal of the American Ceramic Society 75 (1992) 958–963.Google Scholar
  54. 54.
    K. Jakus, J.E. Ritter and R.H. Schwillinski, Journal of the American Ceramic Society 76 (1993) 33–38.Google Scholar
  55. 55.
    J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.Google Scholar
  56. 56.
    J. Botsis, A. Chudnovsky and A. Moet, International Journal of Fracture 33 (1987) 263–276.Google Scholar
  57. 57.
    J. Botsis, A. Chudnovsky and A. Moet, International Journal of Fracture 33 (1987) 277–284.Google Scholar
  58. 58.
    N. Verheulpen-Heymans and J.C. Bauwens, Journal of Materials Science 11 (1976) 1–6.Google Scholar
  59. 59.
    N. Verheulpen-Heymans and J.C. Bauwens, Journal of Materials Science 11 (1976) 7–16.Google Scholar
  60. 60.
    B.D. Lauterwasser and E.J. Kramer, Philosophical Magazine, A 39 (1979) 469–495.Google Scholar
  61. 61.
    R. Schirrer, J. LeMasson, B. Tomatis and R. Lang, Polymer Engineering and Science 24 (1984) 820–824.Google Scholar
  62. 62.
    E.J. Kramer, Polymer Engineering and Science 24 (1984) 761–769.Google Scholar
  63. 63.
    S.S. Chern and C.C. Hiao, Journal of Applied Physics 53 (1982) 6541–6551.Google Scholar
  64. 64.
    B. Budiansky and J.W. Hutchinson, Journal of Applied Mechanics 45 (1978) 267–276.Google Scholar
  65. 65.
    R.W. Hertzberg, M.D. Skibo and J.A. Manson, in Fatigue Mechanisms, ASTM STP 675, (1979) 471–500.Google Scholar
  66. 66.
    K. Kadota and A. Chudnovsky, in Recent Advances in Damage Mechanics and Plasticity, AMD-Vol. 132/Md-Vol. 30, J.W. Ju (ed.), ASME (1992) 115–130.Google Scholar
  67. 67.
    J. Kim and R.E. Robertson, Journal of Material Science 27 (1992) 3000–3009.Google Scholar
  68. 68.
    N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands (1963).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Francesco Costanzo
    • 1
  • David H. Allen
    • 1
  1. 1.Center for Mechanics of Composites, Texas Engineering Experiment StationThe Texas A&M University SystemCollege StationUSA

Personalised recommendations