Acta Applicandae Mathematica

, Volume 21, Issue 1–2, pp 193–246

Supersymmetric bracket algebra and invariant theory

  • Rosa Q. Huang
  • Gian-Carlo Rota
  • Joel A. Stein
Article

AMS subject classifications (1980)

05A40 15A72 

Key words

Supersymmetric algebra matrix identities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnabei, M., Brini, A. & Rota, G.-C., On the exterior calculus of invariant theory, J. of Algebra 96 (1985), 120–160.Google Scholar
  2. 2.
    Brini, A., Palareti, A. & Teolis, A., Gordan-Capelli series in superalgebras, Proc. Natl. Acad. Sci. USA, 85 (1988), 1330–1333.Google Scholar
  3. 3.
    Brini, A. & Teolis, A., Young-Capelli symmetrizers in superalgebras, Proc. Natl. Acad. Sci. USA, 86 (1989), 775–778.Google Scholar
  4. 4.
    Désarménien, J., Kung, J. P. S. & Rota, G.-C., Invariant Theory, Young bitableaux and combinatorics, Adv. in Math. 27 (1978), 63–92.Google Scholar
  5. 5.
    Dubilet, P., Rota, G.-C. & Stein, J. A., On the foundations of combinatorial theory IX: Combinatorial method in invariant theory, Stud. Appl. Math 53 (1976), 185–216.Google Scholar
  6. 6.
    Gelfand, M. & Ponomarev, V. A., Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, Colloquia Mathematica Societatis Janos Bolyai, (1970) 163–237.Google Scholar
  7. 7.
    Grace, J. H. & Young, A., The algebra of invariants, Chelsea, New York, 1903.Google Scholar
  8. 8.
    Grassmann, H., Gesammelte Werke (6 volls.), Teubner, Leipzig, 1911.Google Scholar
  9. 9.
    Grosshans, F., Rota, G.-C. & Stein, J. A., Invariant Theory and Superalgebras, Amer. Math. Soc., Providence, RI 69 (1987).Google Scholar
  10. 10.
    Huang, R. Q., Rota, G.-C., & Stein, J. A., Supersymmetric algebra, super-symmetric space, and invariant theory, Annali Scuola Normale Superiore (Volume dedicated to L. Radicati), (1989) Pisa.Google Scholar
  11. 11.
    Koh, S. S. (ed), Invariant Theory, Lecture Notes in Math. No. 1278, Springer-Verlag, New York, 1987.Google Scholar
  12. 12.
    Kung, J. P. S. (ed.), Yung tableaux in combinatorics, invariant theory and algebra, Academic Press, New York, 1982.Google Scholar
  13. 13.
    Kung, J. P. S. & Rota, G.-C., The invariant theory of binary forms, Bull. Amer. Math. Soc. 10 (1984), 27–85.Google Scholar
  14. 14.
    Littlewood, D. E., Invariant theory, tensors and group characters, Phil. Trans. Royal Soc. A, 239 (1944), 305–365.Google Scholar
  15. 15.
    McMillan, T. & White, N. L., The dotted straightening algorithm, to appear in J. of Symb. Comp.Google Scholar
  16. 16.
    McMillan, T. & White, N. L., Cayley factorization, in Proc. International Symposium on Symbolic and Algebraic Computations, Rome, 1988.Google Scholar
  17. 17.
    Popov, V., Constructive invariant theory, Asterisque 87–88 303–334.Google Scholar
  18. 18.
    Rota, G.-C. & Stein, J. A., Standard basis in supersymplectic algebras, Proc. Natl. Acad. Sci. USA, 86 (1989), 2521–2524.Google Scholar
  19. 19.
    Rota, G.-C. & Stein, J. A., Supersymmetric Hilbert space, Proc. Natl. Acad. Sci. USA, 87 (1990), 653–657.Google Scholar
  20. 20.
    Rota, G.-C. & Stein, J. A., Applications of Cayley algebras, Colloquio Internazionale sulle Teorie Comninatoriee, Tomo II, Accad. Naz. Lincei, Rome, (1976) 71–97.Google Scholar
  21. 21.
    Rota, G.-C. & Stein, J. A., Symbolic method in invariant theory, Proc. Natl. Acad. Sci. USA, 83 (1986), 844–847.Google Scholar
  22. 22.
    Springer, T. A., Invariant Theory, Lecture Notes in Math. No. 585, Springer-Verlag, New York, 1977.Google Scholar
  23. 23.
    Sturmfels, B. & White, N. L., Gröbner bases and invariant theory, Adv. in Math. 76 (1989), 245–259.Google Scholar
  24. 24.
    Turnbull, H. W., The projective invariants of four medials, Proc. Edinburgh Math. Soc., 7 (2) (1942), 55–72.Google Scholar
  25. 25.
    Young, A., The collected papers of Alfred Young, University of Toronto-Press, Toronto, 1977.Google Scholar
  26. 26.
    Wallace, A. H., Invariant matrices and Gorden-Capelli series, Proc. London Math. Soc. 2 (1952), 98–127.Google Scholar
  27. 27.
    Weitzenböck, Komplex-Symbolik, Teubner, Leipzig, 1908.Google Scholar
  28. 28.
    Weitzenböck, Invariantentheorie, Noordhoff, Groningen, 1923.Google Scholar
  29. 29.
    White, N. L., Multilinear Cayley factorization, to appear in J. of Symb. Comp.Google Scholar
  30. 30.
    Whitely, W., Logic and invariant theory, I. Invariant theory of projective properties, Trans. Amer. Math. Soc. 177 (1973), 121–139.Google Scholar
  31. 31.
    Weyl, H., The classical groups, Princeton Univ. Press, Princeton NJ, 1946.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Rosa Q. Huang
    • 1
  • Gian-Carlo Rota
    • 1
  • Joel A. Stein
    • 1
  1. 1.Department of MathematicsMITCambridgeU.S.A.

Personalised recommendations