Advertisement

Acta Applicandae Mathematica

, Volume 4, Issue 2–3, pp 115–137 | Cite as

The prediction of a protein and nucleic acid structure: Problems and prospects

  • Minoru Kanehisa
  • Charles DeLisi
Article

Abstract

Recent advances in DNA and protein-sequencing technologies have made an increasing number of primary structures available for theoretical investigations. The prediction of a higher-order protein, and nucleic acid structure in particular, is an area where computational approaches will be able to complement the lack of experimental observations. We review some of the problems related to structure predictions: sequence homology searches, secondary structure prediction in RNAs, and regular structure prediction in proteins. The first two are mathematically well-defined problems, for it is not usually necessary to consider long-range interactions. The solution to a smaller segment is a part of the solution to the entire sequence. Thus, the problem can be solved by dynamic programming algorithms. The prediction of protein structures poses a more complex combinatorial problem, as illustrated in our statistical mechanical treatment. A promising approximation is to calculate locally optimal structures stabilized by relatively short-range interactions, and then to include longer-range effects as interactions between the locally optimal structures.

AMS (MOS) subject classifications (1980)

82A05 90C39 

Key words

Macromolecular structure dynamic programming optimization statistical mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanehisa M., Klein P., Greif P., and DeLisi C.: Nucleic Acids Res. 12 (1983), 417–428.Google Scholar
  2. 2.
    Anfinsen C. B., Harber E., Sela M., and White F. H.: Proc. Nat. Acad. Sci. USA 47 (1961), 1309–1314.Google Scholar
  3. 3.
    Flory P.: Statistical Mechanics of Chain Molecules, Interscience, New York, 1969.Google Scholar
  4. 4.
    Pincus M. and Klausner R.: Proc. Nat. Acad. Sci USA 79 (1982), 3413–3417.Google Scholar
  5. 5.
    Dickerson R. E.: Sci. Am. 249 (1983), 94–111.Google Scholar
  6. 6.
    Alberts B., Bray D., Lewis J., Raff M., Roberts K., and Watson J. D.: Molecular Biology of the Cell, Garland Publishing Co., New York, 1983.Google Scholar
  7. 7.
    Cantor C. and Schimmel P.: Biophysical Chemistry, vol. 1, W. H. Freeman Co., San Francisco, (1980).Google Scholar
  8. 8.
    Dayhoff M.: Atlas of Protein Sequence and Structure, vol. 5, National Biomedical Research Foundation, Washington, D.C., 1972.Google Scholar
  9. 9.
    Needleman S. B. and Wunsch C. D.: J. Mol. Biol. 48 (1970), 443–453.Google Scholar
  10. 10.
    Sankoff D.: Proc. Nat. Acad. Sci. USA 69 (1972), 4–6.Google Scholar
  11. 11.
    Sellers P. H.: SIAM J. Appl. Math. 26 (1974), 787–793.Google Scholar
  12. 12.
    Waterman M. S., Smith T. F., and Beyer W. A.: Advan. Math. 20 (1976), 367–386.Google Scholar
  13. 13.
    Sellers P. H.: Proc. Nat. Acad. Sci. USA 76 (1979), 3041.Google Scholar
  14. 14.
    Sellers P. H.: J. Algorithms 1 (1980), 359–373.Google Scholar
  15. 15.
    Goad W. B. and Kanehisa M. I.: Nucleic Acids Res. 10 (1982), 247–263.Google Scholar
  16. 16.
    Kanehisa M. I. and Goad W. B.: Nucleic Acids Res. 10 (1982), 265–278.Google Scholar
  17. 17.
    Gotoh O.: J. Mol. Biol. 162 (1982), 705–708.Google Scholar
  18. 18.
    Fitch W. M. and Smith T. F.: Proc. Nat. Acad. Sci. USA 80 (1983), 1382–1386.Google Scholar
  19. 19.
    DeLisi C. and Kanehisa M.: Math. Biosci. 69 (1984), 77–85.Google Scholar
  20. 20.
    DeLisi C. and Crothers D. M.: Biopolymers 10 (1971), 2323–2343.Google Scholar
  21. 21.
    Gralla J. and Crothers D. M.: J. Mol Biol. 78 (1973), 301–319.Google Scholar
  22. 22.
    DeLisi C. and Crothers D. M.: Proc. Nat. Acad. Sci. USA 68 (1971), 2682–2685.Google Scholar
  23. 23.
    Salser W.: Cold Spring Harbor Symp. Quant. Biol. 62 (1977), 985–1002.Google Scholar
  24. 24.
    Nussinov R. and Jacobson A. B.: Proc. Nat. Acad. Sci. USA 77 (1980), 6309–6313.Google Scholar
  25. 25.
    Zucker M. and Stiegler P.: Nucleic Acids Res. 9 (1981), 133–148.Google Scholar
  26. 26.
    DeLisi C. and Crothers D.: Biopolymers 10 (1971), 1809–1827.Google Scholar
  27. 27.
    DeLisi C.: Biopolymers 13 (1974), 1511–1512.Google Scholar
  28. 28.
    Jernigan R. and Szu S. C.: Macromolecules 12 (1979), 1156–1159.Google Scholar
  29. 29.
    Richardson J.: Nature 268 (1977), 495–500.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Minoru Kanehisa
    • 1
  • Charles DeLisi
    • 1
  1. 1.Laboratory of Mathematical BiologyBethesdaU.S.A.

Personalised recommendations