Biodiversity & Conservation

, Volume 5, Issue 12, pp 1619–1653 | Cite as

Specific and genetic diversity at deep-sea hydrothermal vents: an overview

  • Didier Jollivet
Papers

Hydrothermal vent communities are ancient (i.e. early Mesozoic) and characterized by high biomasses, low number of species and high levels of endemism. However, little is known about the ecology and behaviour of the vent macro-and megafauna. Data on the biology and the life-history of hydrothermal-vent organisms are scarce and lead us to hypothesize various ways in which such species disperse and colonize their habitat. Such biological and ecological patterns are important for assessing both the spatial and temporal distribution of the vent fauna and the evolution of such peculiar species with geological times and, therefore need to be reviewed. Scattered information referring to vent-site distribution, bottom currents, temporal evolution of the vent emissions and their implication on the related fauna have been accumulated over the last decade. To date, several ecological and genetic studies have attempted to analyse vent fauna structures to understand how populations and communities evolve with time in such a patchy and unstable environment. They also provide faunistic comparisons across the vent communities discovered so far on well-separated oceanic ridges. This article provides a synthetic overview on biodiversity in deep-sea hydrothermal vents, genetic diversity of hydrothermal-vent species and factors responsible for similarities or differences among the vent fauna within and between well-separated venting areas of the Atlantic and Pacific ridges.

Keywords

hydrothermal vents biodiversity genetic variability speciation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autem, M., Salvidio, S., Pasteur, N., Desbruyères, D. and Laubier, L. (1985) Mise en évidence de l'isolement génétique des deux formes sympatriques d'Alvinella pompejana (Polychaeta, Ampharetidae), annélides inféodées aux sites hydrothermaux actifs de la dorsale du Pacifique oriental. C. R. Acad. Sci. Paris, Sér. III 301, 131–5.Google Scholar
  2. Banks, D.A. (1985) A fossil hydrothermal worm assemblage from Tynagh lead-zinc deposit in Ireland. Nature 313, 128–31.Google Scholar
  3. Berg, C.J.Jr (1985) Reproductive strategies of mollusks from abyssal hydrothermal vent communities. Bull. Biol. Wash. Soc. 6, 185–98.Google Scholar
  4. Berg, C.J.Jr and Turner, R.D. (1980) Description of living specimens of Calyptogena magnifica Boss & Turner with notes on their distribution and ecology. Appendix 1. Malacology 20, 183–5.Google Scholar
  5. Black, M.B. (1991) Genetic (allozyme) variation in Vestimentifera (Ridgeia spp.) from hydrothermal vents of the Juan de Fuca Ridge (Northeast Pacific ocean). Master of Science thesis. University of Victoria.Google Scholar
  6. Black, M.B., Lutz, R.A. and Vrijenhock, R.C. (1994) Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the Eastern Pacific. Mar. Biol. 120, 33–9.Google Scholar
  7. Both, R., Crook, K., Taylor, E., Chappell, B., Frankel, E., Liu, L., Sinton, J. and Tiffin, D. (1986) Hydrothermal chimneys and associated fauna in the Manus back-are basin, Paupa, New Guinea. Eos 67, 489–90.Google Scholar
  8. Bucklin, A. (1988) Allozymic variability of Riftia pachyptila populations from the Galapagos Rift and 21°N hydrothermal vents. Deep-Sea Res. 35, 1759–68.Google Scholar
  9. Bucklin, A., Wilson, R.R. and Smith, K.L.J. (1987) Genetic differentiation of seamount and basin populations of the deep-sea amphipod Eurythenes grillus. Deep-Sea Res. 34, 1795–810.Google Scholar
  10. Butterfield, D.A., McDuff, R.E. and Lilley, M.D. (1989) Chemical heterogeneity in vent fluids from the Eudeavour Ridge. Eos 70, 1163.Google Scholar
  11. Campbell, A.C., Bowers, T.S., Measures, C.I., Falkner, K.K., Khadem, M. and Edmond, J.M. (1988a) a time series of vent fluid compositions from 21N, East Pacific Rise, (1979, 1981, 1985) and the Guaymas Basin, Gulf of California (1982, 1985). J. Geophys. Res. 93, 4537–49.Google Scholar
  12. Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., Bowers, T.S., Edmond, J.M., Lawrence, J.R., Casey, J.F., Thompson, G., Humphires, S., Rona, P. and Karson, J.A. (1988) Chemistry of hot springs on the mid-Atlantic Ridge. Nature 335, 514–19.Google Scholar
  13. Cary, S.C. and Giovannoni, S.T. (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. Natl Acad. Sci. USA 90, 5695–9.Google Scholar
  14. Cary, S.C., Felbeck, H. and Holland, N.D. (1989) Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila. Mar. Ecol. Prog. Ser. 52, 89–94.Google Scholar
  15. Cary, S.C., Warren, W.D., Anderson, E. and Giovannoni, S.T. (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mar. Mol. Biol. Biotechnol. 2, 51–62.Google Scholar
  16. Cherry, R., Desbruyères, D., Heyraud, M. and Nolan, C. (1992) High levels of natural radioactivity in hydrothermal vent polychactes. C. R. Acad. Sci. Paris, sér. III 315, 21–6.Google Scholar
  17. Chevaldonné, P. and Jollivet, D. (1993) Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour. Mar. Ecol. Prog. Ser. 95, 251–62.Google Scholar
  18. Chevaldonné, P., Desbruyères, D. and Le Haitre, M. (1991) Time series of temperature from three deep-sea hydrothermal vent sites. Deep-Sea Res. 38, 1417–30.Google Scholar
  19. Chevaldonné, P., Desbruyères and Childress, J.J. (1992) Some like it hot ... and some even hotter, Nature 359, 593–4.Google Scholar
  20. Chevaldonné, P., Jollivet, D., Vangriesheim, A. and Desbruyères, D. (1996) Hydrothermal-vent alvinellid polychaete dispersal in the eastern Pacific. 1. Influence of vent site distribution, bottom currents and biological features. Limnol. Oceanogr. (in press).Google Scholar
  21. Childress, J.J. and Fisher, C.R. (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Annu. Rev. 30, 337–441.Google Scholar
  22. Comtet, T. (1994) Etude de la croissance allométrique et de la structure des populations de modioles sur la zone hydrothermale Lucky Strike (37° 17′N sur la ride médio-atlantique). Unpublished Report, DEA d'Océanologie Biologique: Université de Bretagne Occidentale.Google Scholar
  23. Craddock, C., Hoeh, W.R., Gustafson, R.G., Lutz, R.A., Hashimoto, J., and Vrijenhoek, R.C. (1995a) Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar. Biol. 121, 477–85.Google Scholar
  24. Craddock, C., Hoeh, W.R., Lutz, R.A. and Vrijenhoek, R.C. (1995b) Extensive gene flow among mytilid (Bathymodiolus thermophilus) populations from hydrothermal vents of the eastern Pacific. Mar. Biol. 124, 137–46.Google Scholar
  25. Creasey, S., Rogers, A.D. and Tyler, P.A. (1996) A genetic comparison of two populations of the deep-sea vent shrimp Rimicaris exoculata (Decapoda: Caridea: Bresiliidae) from the Mid-Atlantic Ridge. Mar. Biol. 125, 473–82.Google Scholar
  26. Dando, P.R., Hughes, J.A. and Thiermann, F. (1995) Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. In Hydrothermal Vents and Processes (L.M. Parson, C.L. Walker and D.R. Dixon, eds) Geological Society special publication 87, 303–17.Google Scholar
  27. Denis, F., Jollivet, D. and Moraga, D. (1993) Genetic separation of two allopatric forms of hydrothermal snails Alviniconcha spp. (Gastropoda) from two south western Pacific back-arcbasins. Biochem. Syst. Ecol. 21, 431–40.Google Scholar
  28. Desbruyères, D. and Laubier, L. (1986) Les Alvinellidae, une famille nouvelle d'annélides polychètres inféodées aux sources hydrothermales sous-marines: systématique, biologie et écologie. Can. J. Zool. 64, 2227–45.Google Scholar
  29. Desbruyères, D., Crassous, P., Grassle, J.F., Khripounoff, A., Reiss, D., Rio, M. and van Praet, M. (1982) Données écologiques sur un nouveau site d'hydrothermalisme actif de la ride du Pacifique oriental. C. R. Acad. Sci. Paris. sér. III 295, 489–94.Google Scholar
  30. Desbruyères, D., Alayse, A.M., Ohta, S. and the scientific shipboard party of BIOLAU and STARMER cruises (1994) Deep-Sea hydrothermal vent communities in two back-are basins of the South West Pacific: composition, microdistribution and food-web. Mar. Geol. 116, 227–42.Google Scholar
  31. Dixon, D.R., Simpson-White, R., Dixon, L.R.J. (1992) Evidence for thermal stability of ribosomal DNA sequences in hydrothermal-vent organisms. J. Mar. Biol. Ass. UK 72, 519–27.Google Scholar
  32. Dixon, D.R., Dixon, L.R.J. and Tunnicliffe, V. (1994) Attributes of ribosomal DNA in alvincllid polychaetes from hydrothermal vents. Mém. Mus. natn. Hist. nat. 162, 85–92.Google Scholar
  33. Dixon, D.R., Jollivet, D., Dixon, L.R.J., Nott, J.A. and Holland, P.W.H. (1995) The molecular identification of early life-history stages of hydrothermal vent organisms. In Hydrothermal Vents and Processes (L.M. Parson, C.L. Walker and D.R. Dixon, eds) Geological Society special publication 87, 343–50.Google Scholar
  34. Dwiono, S.A.P., Morgan, D., Le Pennec, M. and Monnat, J. (1989) Genetic variability of the Lucinidae: Loripes lucinalis, Lucinella divaricata and Lucinoma borealis minor. Biochem. Syst. Ecol. 17, 463–8.Google Scholar
  35. Edmond, J.M. and von Damm, K.L. (1985) Chemistry of ridge crest hot springs. Bull. Biol. Wash Soc., 6, 43–8.Google Scholar
  36. Edmond, J.M. von Damm, K.L., McDuff, R.E. and Measures, C.I. (1982) Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297, 187–91.Google Scholar
  37. Féral, J.-P., Philippe, H., Desbruyères, D., Laubier, L., Derelle, E. and Chenuil, A. (1994) Phylogénie moléculaire de polychètes Alvinellidae des sources hydrothermales actives de l'océan Pacifique. C. R. Acad. Sci. Paris, Life Sciences 317, 771–9.Google Scholar
  38. Fitch, W.M. and Margoliash, E. (1967) Construction of phylogenetic trees: a method based on mutational differences as estimated from cytochrome C sequences is of general applicability. Science 155, 279–84.Google Scholar
  39. Folmer, O., Black, M.B., Hoeh, W.R., Lutz, R.A. and Vrijenhock, R.C. (1994) DNA primers for amplification of mitochondrial Cytochrome c Oxidase subunit I from divers metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–9.Google Scholar
  40. France, S.C., Hessler, R.R. and Vrijenhoek, R.C. (1992) Genetic differentiation between spatiallydisjunct populations of the deep-sea hydrothermal vent-endemic amphipod Ventiella sulfuris. Mar. Biol. 114, 551–9.Google Scholar
  41. Fretter, V. (1988) New archaeogastropod limpets form hydrothermal vents: superfamily Lepetodrilacea II. Anatomy. Phil. Trans. R. Soc. Lond. B 318, 33–82.Google Scholar
  42. Fustec, A., Desbruyères, D. and Juniper, S.K. (1987) Deep-sea hydrothermal vent communities at 13°N on the east Pacific Rise: microdistribution, and temporal variations. Biol. Oceanogr 4, 121–64.Google Scholar
  43. Fustec, A., Desbruyères, D.. and Laubier, L. (1988) Estimation de la biomasse des peuplements associés aux sources hydrothermales profondes de la dorsale du Pacifique oriental à 13°N. Oceanol. Acta 8, 15–22, special issue.Google Scholar
  44. Grassle, J.P. (1985) Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus thermophilus) form the Galapagos Riff and 13°N on the East Pacific Rise, Biol. Soc. Wash. Bul. 6 429–42Google Scholar
  45. Grassle, J.F. (1986) The ecology of deep-sea hydrothermal vent communities. Adv. Mar. Biol. 23, 301–62.Google Scholar
  46. Grassle, J.F., Brown-Leger, L.S., Morse-Porteous, L., Petreca, R. and Williams, I. (1985) Deep-sea fauna of sediments in the vicinity of hydrothermal vents. Bull. Biol. Wash. Soc. 6, 411–28.Google Scholar
  47. Haddad, A., Camacho, F., Durand, P. and Cary, C., (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete. Alvinella pompcjana. Appl. Environ. Microbiol. 61, 1679–87.Google Scholar
  48. Hartl, D.L. (1988) A Primer of Population Genetics, 2nd edn. Sunderland, MA: Sinauer Associates.Google Scholar
  49. Hashimoto, J., Ohta, S., Fujikura, K. and Miura, T. (1995) Microdistribution pattern and biogeography of the hydrothermal vent communities of the Minami-Ensei Knoll in the Mid-Okinawa Trough, Western Pacific. Deep-Sea Res. 42, 577–98.Google Scholar
  50. Haymon, R.M., Koski, R.A. and Sinclair, C. (1984) Fossils of hydrothermal vent worms from cretaceous sulfide ores of the Samail Ophiolites, Oman. Science 223, 1407–9.Google Scholar
  51. Haymon, R.M., Fornari, D.J., Edwards, M.H., Carbotte, S., Wright, D. and McDonald, K.C. (1991) Hydrothermal vent distribution along the East Pacific Rise crest (9°09–54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet. Sci. Lett. 104, 513–34.Google Scholar
  52. Haymon, R.M., Fornari, D.J., von Damm, K.L., Lilley, M.D., Perfit, M.R., Edmond, J.M., ShanksIII, W.C., Lutz, R.A., Grebmiet, J.M., Carbotte, S., Wright, D., McLaughlin, E., Smith, M., Beedle, N. and Olson, E. (1993) Volcanic eruption of the mid-Atlantic ridge along the East Pacific Rise crest at 9°45–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101.Google Scholar
  53. Hessler, R.R. and Lonsdale, P.F. (1991) Biogeography of Mariana Trough hydrothermal vent communities. Deep-Sea Res. 38, 185–99.Google Scholar
  54. Hessler, R.R. and Smithey, W.M.Jr (1983) The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Hydrothermal Processes at Seafloor Spreading Centres (G. Bötrom, P.A. Rona and L. Laubier, eds) pp. 735–770. NATO Conference Series 2. Plenum Press.Google Scholar
  55. Hessler, R.R., Smithey, W.M.Jr and Keller, C.M. (1985) Spatial and temporal variation of giant clams, tube worms and mussels at deep sea hydrothermal vents. Bull. Biol. Wash. Soc. 6, 411–28.Google Scholar
  56. Hessler, R.R., Smithey, W.M.Jr., Boudrias, M.A., Keller, C.H., Lutz, R.A. and Childress, J.J. (1988) Temporal changes in megafauna at the Rose Garden hydrothermal vent. Deep-Sea Res. 35A, 1681–709.Google Scholar
  57. Jannasch, H.W. (1985) The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc. R. Soc. London, Ser. B 225, 277–97.Google Scholar
  58. Johnson, K.S., Beehler, C.L. and Childress, J.J. (1988a) Short-term temperature variability in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-Sea Res. 35A, 1711–21.Google Scholar
  59. Johnson, K.S., Childress, J.J., Hessler, R.R., Sakamoto-Arnold, C.M. and Beehler, C.L. (1988b) Chemical and biological interactions in the Rose Garden vent field. Deep-Sea Res. 35A, 1723–44.Google Scholar
  60. Johnson, K.S., Childress, J.J., Beehler, C.L. and Sakamoto, C.M. (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal zone. Deep-Sea Res. 41, 993–1011.Google Scholar
  61. Jollivet, D. (1993) Distribution et évolution de la faune associée aux sources hydrothermales profondes à 13°N sur la dorsale du Pacifique oriental: le cas particulier des polychètes Alvinellidae. Thèse de doctorat nouveau régime, 357 pp. Université de Bretagne Occidentale.Google Scholar
  62. Jollivet, D., Hashimoto, J. and the scientific shipboard party (1989) Premières observations de communautés animales associées à l'hydrothermalisme arrière-arc du bassin nord-fidjien. C. R. Acad. Sci. Paris, sér. III 309, 301–8.Google Scholar
  63. Jollivet, D., Desbruyères, D., Moraga, D. and Bohomme, F. (1995a) Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise. Heredity 74, 376–91.Google Scholar
  64. Jollivet, D., Desbruyères, D., Ladrat, C. and Laubier, L. (1995b) Evidence for differences in allozyme thermostability in deep-sea hydrothermal vent polychaetes Alvinellidae: a possible selection by habitat. Mar. Ecol. Prog. Ser. 123, 125–36.Google Scholar
  65. Jollivet, D., Dixon, L.R.J., Desbruyères, D. and Dixon, D.R. (in press) Ribosomal DNA (rDNA) variation in a deep-sea hydrothermal vent polychaete, Alvinella pompejana Desbruyères & Laubier from the East Pacific Rise, J. Mar. Biol. Ass. UK. Google Scholar
  66. Jones, M.L. and Gardiner, S.L. (1985) Light and scanning electron microscopic studies of spermatogenesis in the vestimentiferan tube worm Riftia pachyptila (Pogonophora: Obturata). Trans. Am. Soc. Microsc. 104, 1–18.Google Scholar
  67. Jones, M.L. and Gardiner, S.L. (1989) On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyptila. Biol. Bull. 177, 154–76.Google Scholar
  68. Juniper, S.K., Tunnicliffe, V. and Southward, E.C. (1992) Hydrothermal vents in turbidite sediments on a Northeast Pacific spreading centre: organisms and substratum at an ocean drilling site. Can. J. Zool. 70, 1792–809.Google Scholar
  69. Kim, S.L., Mullineaux, L.S. and Helfrich, K.R. (1994) Larval dispersal via entrainment into hydrothermal vent plumes. J. Geophys. Res. C 99, 12655–65.Google Scholar
  70. Kimura, M. and Weiss, G.H. (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–76.Google Scholar
  71. Kojima, S., Hashimoto, T., Hasegawa, M., Murata, S., Ohta, S., Seki, H. and Okada, N. (1993) Close phylogenetic relationship between Vestimentifera (tube-worms) and Annelida revealed by the amino acid sequence of elongation factor-1α. J. Mol. Evol. 37, 66–70.Google Scholar
  72. Kojima, S., Segawa, R., Kobayashi, T., Hashimoto, T., Fujikura, K., Hashimoto, J. and Ohta, S. (1995) Phylogenetic relationships among species of Calyptogena (Bivalvia: Vesicomyidae) collected around Japan revealed by nucleotide sequences of mitochondrial genes. Mar. Biol. 122, 401–7.Google Scholar
  73. Kuznetsov, A.P., Zaikov, V.V. and Maslennikov, V.V. (1991) Ophiolites—a ‘chronicle’ of volcanic. tectonic, physical-chemical and biotic events in the formation of the Earth's crust on the floors of paleo-oceans. Izv. Akad. Nauk SSSR, ser. Biol. 2, 232–42.Google Scholar
  74. Lalou, C. (1991) Deep-sea hydrothermal venting: a recently discovered marine system. J. Mar. Systems 1, 403–40.Google Scholar
  75. Lalou, C., Thompson, G., Arnold, M., Brichet, E., Druffel, E. and Rona, P.A. (1990) Geochronology of TAG and Snake Pit hydrothermal vent fields, Mid-Atlantic Ridge: witness to a long and complex hydrothermal history. Earth Planet. Sci. Lett. 97, 113–28.Google Scholar
  76. Lane, D.J., Stahl, D.A., Olsen, G.J. and Pace, N.R. (1985) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Bull. Biol. Wash. Soc. 6, 389–400.Google Scholar
  77. Le Pennec, M. (1988) Alimentation et reproduction d'un Mytilidae des sources hydrothermales profondes du Pacifique oriental. Oceanol. Acta 8, 181–90, special issue.Google Scholar
  78. Little, S.A., Stolzenbach, K.D. and J.F. Grassle (1988) Tidal current effects on temperature in diffuse hydrothermal flow: Guaymas Basin. Geophys. Res. Lett. 15, 1491–4.Google Scholar
  79. Lonsdale, P.F. (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Res. 24, 857–63.Google Scholar
  80. Lutz, R.A. (1988) Dispersal of organisms at deep-sea hydrothermal vents: a review. Ocenol. Acta, 8, 23–29, special issue.Google Scholar
  81. Lutz, R.A. (1991) The biology of deep-sea vents and seeps. Oceanus 34, 75–83.Google Scholar
  82. Lutz, R.A., Jablonski, D., Rhoads, D.C. and Turner, R.D. (1980) Larval disporsal of a deep-sea hydrothermal vent bivalve from the galapagos Rift. Mar. Biol. 57, 127–33.Google Scholar
  83. Lutz, R.A., Bouchet, P., Jablonski, D., Turner, R.D. and Warén, A.D. (1986) Larval ecology of mollusks at deep-sea hydrothermal vents. Am. Maiacol. Bull. 4, 49–54.Google Scholar
  84. Lutz, R.A., von Damm, K.L., Desbruyères, D., Fornari, D.J., Haymon, R.M., Lilley, M.D. and Shanks, T.M. (1994) Rapid growth at deep-sea vents. Nature 371, 663–4.Google Scholar
  85. Manwell, C. and Baker, C.M.A. (1970) Molecualr Biology and the Origin of Species. Seattle: University of Washington Press.Google Scholar
  86. Maruyama, T. and Kimura, M. (1980) Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc. Natl Acad. Sci. USA 77, 6710–14.Google Scholar
  87. Massoth, G.J., Butterfield, D.A., Lupton, J.E., McDuff, R.E., Lilley, M.D. and Jonasson, I.R. (1989) Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge. Nature 340, 702–5.Google Scholar
  88. McHugh, D. (1989) Population structure and reproductive biology of two sympatric hydrothermal vent polychaete, Paralvinella pandorae and P. palmiformis. Mar. Biol. 103, 95–106.Google Scholar
  89. McHugh, D. and Tunnicliffe, V. (1994) Ecology and reproductive biology of the hydrothermal vent polychaete Amphisamytha galapagensis (Ampharetidae). Mar. Ecol. Prog. Ser. 106, 111–20.Google Scholar
  90. McLean, J.H. (1988) New archaeogastropod limpets from hydrothermal vents: Superfamily Lepetodrilacea. I. Systematic descriptions. Phil. Trans. Roy. Soc. London, B 319, 1–32.Google Scholar
  91. Michard, G., Albarède, F., Michard, A., Minster, J.-F., Charlou, J.-L. and Tan, N. (1984) Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site. Earth Planet. Sci. Lett. 67, 297–307.Google Scholar
  92. Mills, R.A. (1995) Hydrothermal deposits and metalliferous sediments from TAG, 26°N Mid-Atlantic Ridge. In: Hydrothermal Vents and Processes (L.M. Parson, C.L. Walker and D.R. Dixon, eds), Geological Society special publication 87, 121–32.Google Scholar
  93. Moraga, D., Jollivet, D. and Denis, F. (1994) Genetic differentiation between two Bathymodiolus spp. of two western back-arc basins and Bathymodiolus thermophilus (13°N: East Pacific Rise). Deep-sea Res. 41, 1551–67.Google Scholar
  94. Mullineaux, L.S., Wiebe, P.H. and Baker, E.T. (1995) Larvae of benthic invertebrates in hydrothermal vent plumes over Juan de Fuca Ridge. Mar. Biol. 122, 585–96.Google Scholar
  95. Mullineaux, L.S., Kim, S.L., Pooley, A. and Lutz, R.A. (1996) Identification of archaeogastropod larvae from a hydrothermal vent community. Mar. Biol. 124, 551–60.Google Scholar
  96. Mutter, J.C. and Karson, J.A. (1992) Structural processes at slow-spreading ridges. Science 257, 627–34.Google Scholar
  97. Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–90.Google Scholar
  98. Newman, W.A. (1985) The abyssal hydrothermal vent invertebrate fauna, a glimpse of antiquity. Bull. Biol. Wash. Soc. 6, 231–42.Google Scholar
  99. Nikiforov, S.M. (1993) Allozyme variation in the populations of marine mollusks inhabiting areas affected by volcanogenic hydrothermal outpourings. Russian J. Mar. Biol. 19, 336–9.Google Scholar
  100. Oudin, E. and Constantinou, G. (1984) Black smoker chimney fragments in Cyprus sulfide deposits. Nature 308, 349–53.Google Scholar
  101. Paradis, S., Jonasson, I.R., Le Cheminant, G.M. and Watkinson, D.H. (1988) Two zinc-chimneys from the Plume site, Southern Juan de Fuca Ridge. Can Mineral. 26, 637–54.Google Scholar
  102. Prager, E.M. and Wilson, A.C. (1976) Congruency of phylogenies derived from different proteins: a molecular analysis of the phylogenetic position of cracid birds. J. Mol. Evol. 9, 45–57.Google Scholar
  103. Prieur, D., Jeanthon, C. and Jacq, E. (1987) Les communautés bactériennes des sources hydrothermales profondes du Pacifique oriental. Vie et Milieu 37, 149–64.Google Scholar
  104. Raguénès, G., Meunier, J-R., Antoine, E., Godfroy, A., Caprais, J-C., Lesongeur, F. and Barbier, G. (1995) Biodiversité d'Archaea hyperthermophiles de sites hydrothermaux du Pacifique oriental. C. R. Acad. Sci. Paris, Life Science 318, 395–402.Google Scholar
  105. Rhoads, D.C., Lutz, R.A., Cerrato, R.M. and Revelas, E.C. (1982) Growth and predation activity at deep-sea hydrothermal vents along the Galapagos Rift. J. Mar. Res. 40, 503–16.Google Scholar
  106. Ritz, J.B., Kervevan, C. and Watremez, P. (1994) Spatio-temporal variations of the hydrothermal activity. Film scientifique CNRS/DIST, EUG: Grenoble.Google Scholar
  107. Rogers, A.D., Gibson, R. and Tunnicliffe, V. (1996) A new genus and species of monostiliferous hoplonermetean colonizing an inchoane hydrothermal field on Juan de Fuca Ridge. Deep-Sea Res. (in press).Google Scholar
  108. Rona, P.A., Klinkhammer, G., Nelsen, T.A., Trefry, T.A. and Elderfield, H. (1986) Black smokers, massive sulfides and vent biota at the mid-Atlantic ridge. Nature 321, 33–7.Google Scholar
  109. Segonzac, M. (1992) Les peuplements associés à l'hydrothermalisme océanique du Snake Pit (dorsale médio-Atlantique. 23N, 3480 m): microdistribution, de la mégafaune. C. R. Acad. Sci. Paris, sér. III, 314, 593–600.Google Scholar
  110. Segonzac, M. and Vervoort, W. (1995) First record of the genus Candelabrum (Cnidaria, Hydrozoa, Athecata) from the Mid-Atlantic Ridge: a description of a new species and a review of the genus. Bull. Mus. natl. Hist. nat. Paris, sér. IV, 17, 31–64.Google Scholar
  111. Solis-Weiss, V. and Hernandez-Alcantara, P. (1994) Amphisamytha fauchaldi: a new species of ampharetid (Annelida: Polychaeta) from the hydrothermal vents at Guaymas Basin, Mexico. S. Calif. Acad. Sci. Bull. 93, 127–34.Google Scholar
  112. Southward, E.C. (1988) Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implication for relationship between vestimentifera and pogonophora. J. Mar. Biol. Ass. UK 68, 465–87.Google Scholar
  113. Southward, E.C. and Coates, K.A. (1989) Spermatophores and sperm transfer in a vestimentiferan. Ridgeia piscesae Jones, 1985 (Pogonophora: Obturata). Can. J. Zool. 67, 2776–81.Google Scholar
  114. Southward, E.C., Tunnicliffe, V., Black, M.B. Dixon, D.R. and Dixon, L.R.J. (1996) Ocean ridge segmentation and hot-vent tubeworms in the northeast Pacific. Geological Society special publication. (in press).Google Scholar
  115. Suzuki, T., Takagi, T. and Ohta, S. (1988) N-terminal amino acid sequence of the deep-sea tube worm haemoglobin remarkably resembles that of annelid haemoglobin. Biochem. J. 255, 541–5.Google Scholar
  116. Suzuki, T., Takagi, T. and Ohta, S. (1990) Primary structure of a constituent polypeptide chain (AIII) of the giant haemoglobin from the deep-sea tube worm Lamellibrachia: a possible H2S-binding site. Biochem. J. 266, 221–5.Google Scholar
  117. Tufar, W. (1990) Modern hydrothermal activity, formation of complex massive sulfide deposits and associated vent communities in the Manus Back-arc Basin (Bismarck Sea, Papua New Guinea). Mitt. österr. geol. Ges., Wien, 82, 183–210.Google Scholar
  118. Tunnicliffe, V. (1988) Biogeography and evolution of hydrothermal-vent fauna in the Eastern Pacific Ocean. Proc. Roy. Soc. Lond. B 233, 347–66.Google Scholar
  119. Tunnicliffe, V. (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr. Mar. Biol. Annu. Rev. 29, 319–407.Google Scholar
  120. Tunnicliffe, V. and Jensen, R.G. (1987) Distribution and behaviour of the spider crab Macroregonia macrochira Sakai (Brachyura) around the hydrothermal vents of the northen Pacific. Can. J. Zool. 65, 2443–9.Google Scholar
  121. Tunnicliffe, V. and Juniper, S.K. (1990) Dynamic character of the hydrothermal vent habitat and the nature of chimney vent fauna. Prog. Oceanogr. 24, 1–13.Google Scholar
  122. Tunnicliffe, V., Juniper, S.K. and deBurgh, M.E. (1985) The hydrothermal vent community of the Axial Seamount, Juan de Fuca Ridge. Bull. Biol. Wash. Soc. 6, 453–64.Google Scholar
  123. Tunnicliffe, V., Botros, M., deBurgh, M.E., Dinet, A., Johnson, H.P., Juniper, S.K. and McDuff, R.E. (1986) Hydrothermal vents of Explorer Ridge, northern Pacific. Deep-Sea Res. 33A, 401–12.Google Scholar
  124. Tunnicliffe, V., Desbruyères, D., Jollivet, D. and Laubier, L. (1993) Systematic and ecological characteristics of Paralvinella sulfincola Desbruyères and Laubier, a new polychaete (family Alvinellidae) from northeast Pacific hydrothermal vents. Can. J. Zool. 71, 286–97.Google Scholar
  125. van Dover, C.L. (1995) Ecology of Mid-Atlantic Ridge hydrothermal vents. In Hydrothermal Vents and Processes (L.M. Parson, C.L. Walker and D.R. Dixon, eds), Geological Society special publication 87, 257–94.Google Scholar
  126. van Dover, C.L., Factor, J.R., Williams, A.B. and Berg, C.J. (1985) Reproductive patterns of decapod crustaceans from hydrothermal vents. Bull. Biol. Wash. Soc. 6, 223–7.Google Scholar
  127. van Dover, C.L., Grassle, J.F. and Boudrias, M. (1990) Hydrothermal vent fauna of Escabana Trough (Gorda Ridge) In Gorda Ridge, a Seafloor Spreading Center in the United States' Exclusive Economic Zone (G.R. McMurray ed.), pp. 285–90. New York: Springer-Verlag.Google Scholar
  128. Vrijenhoek, R.C., Schulz, S.J., Gustafson, R.G. and Lutz, R.A. (1994) Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep-Sea Res. 41, 1171–89.Google Scholar
  129. Warén, A. and Bouchet, P. (1993) New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zool. Scripta 22, 1–90.Google Scholar
  130. Watremez, P. and Kervevan, C. (1990) Origine des variations de l'activté hydrothermale: premiers éléments de réponse d'un modèle numérique simple. C. R. Acad. Sci. Paris, sér.II, 311, 153–8.Google Scholar
  131. Williams, A.B. and Chase, F.A. (1982). A new caridean shrimp of the Bresiliidae from thermal vents of the Galapagos Rift. J. Crust. Biol. 2, 136–47.Google Scholar
  132. Williams, N.A., Dixon, D.R., Southward, E.C. and Holland, P.H. (1993) Molecular evolution and diversification of the vestimentiferan tube worms. J. Mar. Biol. Ass. UK 73, 437–52.Google Scholar
  133. Zal, F., Desbruyères, D. and Jouin-Toulmond, C. (1994) Sexual dimorphism in Paralvinella grasslei, a polychaete annelid from deep-sea hydrothermal vents. C. R. Acad. Sci. Paris, Life Sciences 317, 42–8.Google Scholar
  134. Zal, F., Jollivet, D., Chevaldonné, P. and Desbruyères, D. (1995) Reproductive biology and population structure of the deep-sea hydrothermal vent worm Paralvinella grasslei (Polychaeta: Alvinellidae) at 13°N on the East Pacific Rise. Mar. Biol. 122, 637–48.Google Scholar
  135. Zottoli, R.A. (1983) Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. Proc. Biol. Soc. Wash. 96, 379–91.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Didier Jollivet
    • 1
  1. 1.Station BiologiqueRoscoff CedexFrance

Personalised recommendations