Vegetatio

, Volume 38, Issue 2, pp 103–112 | Cite as

Dynamics of benthic algal vegetation and environment in Dutch estuarine salt marshes studied by means of permanent quadrats

  • P. H. Nienhuis
Article

Summary

Knowledge of the spatial structure of benthic algal vegetations in salt marshes, consisting of about 100 species of blue-green, green, brown and red algae, formed the basis of a detailed study into the dynamics of the algal mat.

The temporal changes in algal vegetations and concomitant processes in their environment were studied in 27 permanent quadrats (PQs), plotted in tidal salt marshes and along brackish inland waters in the SW Netherlands. Once a month vegetation and environment of the PQs were examined over the period March 1968-February 1971. From the Spearman rank-correlation between vegetational and environmental parameters it appeared that in semiterrestrial and terrestrial environments the average number of algal species in a relevé and the average similarity between the species composition of successive relevés obtained from one PQ have a significant positive correlation with the stability of the substrate, and hardly any correlation with fluetuations in soil-moisture content and salinity of the soil moisture and with the maximum cover percentage of the phanerogams.

Stable substrates tend to bear stable algal mats, as appeared from quantitative data. Small and moderate fluctuations in soil-moisture content and salinity of the soil moisture have no limiting influence on the algal cover degree. During periods of extremely high salinity and concomitant extremely low soil-moisture contents that coincide with evaporation surpluses, the green algal mat bleaches and decreases in cover in semi-terrestrial and terrestrial environments. Below 20% the soil-moisture content is limiting for the expansion of a mat of green algae (Rhizoclonium riparium, Percursaria percursa, Enteromorpha torta, E. prolifera) and Vaucheria species. The mat desiceates and bleaches but recovers after increase of the soil-moisture content above 20% within one month. Two weeks of severe frost (temperature down to − 10°C) do not influence the cover degree of the algal mat in aquatic branckish PQs, but the cover degree in semi-terrestrial PQs decreases. Short lasting soil-moisture salinities of 130–190 ‰ Cl have no limiting effect on the expansion of the algal mat.

Keywords

Netherlands Permanent quadrats Salt-marsh algae Salt-marsh environment Vegetation dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 1968–1970. Maandelijks overzicht van de weers-gesteldheid. Koninklijk Nederlands Meteorologisch Instituut 65e–67e jaargang. Uitgave 94a.Google Scholar
  2. BeeftinkW.G. 1977. The coastal salt marshes of western and northern Europe: an ecological and phytosociological appreach. In: V.J.Chapman (ed.), Wet Coastal ecosystems. pp. 109–155. Elsevier, Amsterdam.Google Scholar
  3. CarterN. 1932. A comparative study of the alga flora of two salt marshes. I. J. Ecol. 20: 341–370.Google Scholar
  4. CarterN. 1933a. A comparative study of the alga flora of two salt marshes. II. J. Ecol. 21: 128–208.Google Scholar
  5. CarterN. 1933b. A comparative study of the alga flora of two salt marshes. III. J. Ecol. 21: 385–403.Google Scholar
  6. ChapmanV.J. 1938. Studies in salt-marsh ecology, sections I to III. J. Ecol. 26: 144–179.Google Scholar
  7. ChapmanV.J. 1939. Studies in salt-marsh ecology, sections IV to V. J. Ecol. 27: 160–201.Google Scholar
  8. ChapmanV.J. 1940. Studies in salt-marsh ecology, sections VI and VII. J. Ecol. 28: 118–152.Google Scholar
  9. ChapmanV.J. 1941. Studies in salt-marsh ecology, section VIII. J. Ecol. 29: 69–82.Google Scholar
  10. ChapmanV.J. 1959. Studies in salt-marsh ecology IX. Changes in salt-marsh vegetation at Scolt Head Island. J. Ecol. 47: 619–639.Google Scholar
  11. Doing KraftH. 1954. l'Analyse des earrés permanents. Acta Bot. Neerl. 3: 421–424.Google Scholar
  12. DrouetF. 1968. Revision of the classification of the Oscillatoriaceae. Acad. Nat. Sci. Philad. Monograph 16: 1–370.Google Scholar
  13. DrouetF. & W.A.Daily. 1956. Revision of the coccoid Myxophyceae. Butler Univ. bot. Stud. 12: 1–222.Google Scholar
  14. GeitlerL. 1932. (reprinted in 1971). Cyanophyceae. In: L. Rabenhorst, Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 14: 1–1196. Johnson Repr. Corp., New York, London.Google Scholar
  15. GoodallD.W. 1973. Sample similarity and species correlation. In: R.H.Whittaker (ed.), Ordination and classification of communities. Handbook of vegetation science 5: 107–156. Junk, Den Haag.Google Scholar
  16. HartogC.den, 1959. The epilithic algal communities occurring along the coast of the Netherlands. Wentia 1: 1–241.Google Scholar
  17. JongeV.N.de. 1976. Algal vegetations on salt-marshes along the Western Dutch Wadden Sea. Neth. J. Sea Res. 10: 262–283.Google Scholar
  18. NienhuisP.H. 1969. Enkele opmerkingen over het geslacht Enteromorpha Link, op de schorren en slikken van Z.W.-Nederland. Gorteria 4: 178–183.Google Scholar
  19. NienhuisP.H. 1970. The benthic algal communities of flats and salt marshes in the Grevelingen, a sea-arm in the south-western Netherlands. Neth. J. Sea Res. 5: 20–49.Google Scholar
  20. Nienhuis, P.H. 1972. The use of permanent sample plots in studying the quantitative ecology of algae in salt marshes. Proceed. VIIth Int. Seaweed Symp., Sapporo, Japan 1971. pp. 251–254.Google Scholar
  21. NienhuisP.H. 1973. Salt-marsh and beach plain as a habitat for benthic algae. Hydrobiol. Bull. 7: 15–24.Google Scholar
  22. Nienhuis, P.H. 1975. Biosystematics and ecology of Rhizoclonium riparium (Roth) Harv. (Chlorophyceae: Cladophorales) in the estuarine area of the rivers Rhine, Meuse and Scheldt. Ph.D. Thesis Rijksuniversiteit Groningen. Bronder Offset B.V. Rotterdam. 240 pp.Google Scholar
  23. NienhuisP.H. & J.Simons. 1971. Vaucheria species and some other algae on a Dutch salt marsh, with ecological notes on their periodicity. Acta Bot. Neerl. 20: 107–118.Google Scholar
  24. OdumE.P. 1971. Fundamentals of ecology. Saunders, Philadelphia. 574 pp.Google Scholar
  25. ParkeM. & P.S.Dixon. 1968. Check-list of British marine algae-second revision. J. mar. biol. Ass. U.K. 48: 783–832.Google Scholar
  26. PoldermanP.J.G. 1974. The algae of saline areas near Vlissingen (The Netherlands). Acta Bot. Neerl. 23: 65–79.Google Scholar
  27. PoldermanP.J.G. 1975a. The algal communities of the north-eastern part of the saltmarsh ‘De Mok’ on Texel (The Netherlands). Acta Bot. Neerl. 24: 361–378.Google Scholar
  28. PoldermanP.J.G. 1975b. Seasonal aspects of algal communities in salt-marshes. Colloques phytosociologiques IV. Les vases salées. pp. 479–487. Cramer, Vaduz.Google Scholar
  29. PoldermanP.J.G. & W.F.Prud'homme van Reine. 1973. Chrysomeris ramosa (Chrysophyceae) in Denmark and in the Netherlands. Acta Bot. Neerl. 22: 81–91.Google Scholar
  30. Powell, H.T. 1963. Speciation in the genus Fucus L. and related genera. In: Speciation in the sea. Publ. Syst. Ass. 5: 63–77.Google Scholar
  31. SimonsJ. 1974. Vaucheria birostris n. sp., and some further remarks on the genus Vaucheria in the Netherlands. Acta Bot. Neerl. 23: 399–413.Google Scholar
  32. SimonsJ. & M.Vroman, 1973. Vaucheria species from the Dutch brackish inland ponds ‘De Putten’. Acta Bot. Neerl. 22: 177–192.Google Scholar
  33. SörensenT. 1948. A method of establishing groups of equal amplitude in plant sociology, based on similarity of species content. Det. Kong. danske vidensk. selsk. Biol. skr. 5: 1–34.Google Scholar

Copyright information

© Dr. W. Junk Publishers 1978

Authors and Affiliations

  • P. H. Nienhuis
    • 1
  1. 1.Delta Institute for Hydrobiological ResearchYersekeThe Netherlands

Personalised recommendations