, Volume 39, Issue 2, pp 115–121 | Cite as

Nutritional status of soil and plant species in several clearings in coniferous woods compared to that in two related habitats

  • J. van Andel
  • H. J. M. Nelissen


The nutritional status of the soils of a series of coniferous woodland clearings in the Netherlands was found to be intermediate between that of the soil in a dune area with a climax population of Chamaenerion angustifolium and that of the edge (and undergrowth) of a Quercus robur stand. In the dune area the greater part of the NPK was present as an internal pool in the plant tissues of C. angustifolium enabling the population of this species to persist and inhibiting further succession through limiting the availability of NPK. It is suggested that succession in clearings might stagnate in the same way in the absence of new tree growth. Because C. angustifolium is capable of persisting as a population under poor N conditions, it is unsuitable as an indicator species for nitrate-rich soils. The same may be true for Senecio sylvaticus, the other character species of the association Epilobio-Senecionetum sylvatici.

A comparison of species in clearings with those occurring on the edge of a wood seems to indicate that, when using field measurements only (i.c. Ntotal and NO3-N in the soil and in the plant tissues, and the activity of nitrate reductase in the leaves), conclusions may indeed be drawn concerning the adaptability of the species to a particular habitat factor (i.c. the availability of nitrate), but not concerning their requirements for that factor or how the species utilize it.


Clearings Indicator value Nitrogen Nutritional status Woodland edge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-MuftiM.M., C.L.Sydes, S.B.Furness, J.P.Grime & S.R.Band. 1977. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J. Ecol. 65: 759–792.CrossRefGoogle Scholar
  2. AndelJ.van 1975. A study on the population dynamics of the perennial plant species Chamaenerion angustifolium (L.) Scop. Oecologia 19: 329–337.CrossRefGoogle Scholar
  3. AndelJ.van 1976. Growth and mineral nutrition of Chamaenerion angustifolium (L.) Scop. (=Epilobium angustifolium L.) on culture solutions. Oecol. Plant. 11: 25–40.Google Scholar
  4. AndelJ.van & F.Vera. 1977. Reproductive allocation in Senecio sylvaticus and Chamaenerion angustifolium in relation to mineral nutrition. J. Ecol. 65: 747–758.CrossRefGoogle Scholar
  5. Austenfeld, F.A. 1969. Einfluss unterschiedlicher Molybdän- und Stickstoffgaben auf die Nitratspeicherung der nitrophilen Pflanzen. Zulassungsarbeit Lehramt an Gymnasien NRW, Münster. (Unpubl.).Google Scholar
  6. BharuchaF.R. & P.J.Dubash. 1951–52. The problem of nitrophily. Vegetatio 3: 183–194.Google Scholar
  7. BraakhekkeW.G. & E.J.Braakhekke-Ilsink 1976. Nitrophile Saumgesellschaften im Südosten der Niederlande. Vegetatio 32: 55–60.CrossRefGoogle Scholar
  8. ChenP.S., T.Y.Toribara & H.Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28: 1756–1758.CrossRefGoogle Scholar
  9. EllenbergH. 1974. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica 9, Goltze, Göttingen.Google Scholar
  10. FerrariTh.E., O.C.Yoder & Ph.Filner. 1973. Anaerobic nitrite production by plant cells and tissues: evidence for two nitrate pools. Plant Physiol. 51: 423–431.CrossRefGoogle Scholar
  11. GrimeJ.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Nat. 111: 1169–1194.CrossRefGoogle Scholar
  12. HagemanR.H. & D.P.Hucklesby. 1971. Nitrate reductase from higher plants. Methods Enzymol. 23: 491–503.CrossRefGoogle Scholar
  13. HavillD.C., J.A.Lee & G.R.Stewart. 1974. Nitrate utilization by species from acidic and calcareous soils. New Phytol. 73: 1221–1231.CrossRefGoogle Scholar
  14. HeukelsS. & S.J.vanOoststroom. 1973. Flora van Nederland. Wolters-Noordhoff, Groningen.Google Scholar
  15. HornH.S. 1976. Succession. In: R.M.May (ed.), Theoretical Ecology. pp. 187–204. Blackwell Scientific Publications, Oxford.Google Scholar
  16. JanieschP. 1973. Beitrag zur Physiologie der Nitrophyten. Nitratspeicherung und Nitratassimilation bei Anthriscus sylvestris. Hoffm. Flora 162: 479–491.CrossRefGoogle Scholar
  17. KurkinK.A. 1977. Systems approach to studies of nitrate regime in grassland biogeocenoses. Oecol. Plant. 12: 23–31.Google Scholar
  18. MerzW. 1970. Neuer Automat zur Stickstoffschnellbestimmung. Laboratorium (Darmstadt) 6: 617–625.Google Scholar
  19. NelsonJ.L., L.T.Kurtz & R.H.Bray. 1954. Rapid determination of nitrates and nitrites. Anal. Chem. 26: 1081–1082.CrossRefGoogle Scholar
  20. NeyraC.A. & R.H.Hageman. 1976. Relationships between carbon dioxide, malate, and nitrate accumulation and reduction in corn (Zea mays L.) seedlings. Plant Physiol. 58: 726–730.CrossRefGoogle Scholar
  21. PigottC.D. 1971. Analysis of the response of Urtica dioica to phosphate. New Phytol. 70: 953–966.CrossRefGoogle Scholar
  22. ShanerD.L. & J.S.Boyer. 1976. Nitrate reductase activity in maize (Zea mais L.) leaves. I. Regulation by nitrate flux. Plant Physiol. 58: 499–504.CrossRefGoogle Scholar
  23. WagnerH. 1969. Zur Berwertung der Waldrand- und Waldschlagarten. Vegetatio 18: 91–103.CrossRefGoogle Scholar
  24. WesthoffV. & A.J.denHeld. 1969. Plantengemeenschappen in Nederland. Thieme & Cie, Zutphen.Google Scholar
  25. WittH.H. & A.Jungk. 1974. Die nitratinduzierbare Nitratreduktase-Aktivität als Mass für die Stickstoffversorgung von Pflanzen. Landwirtsch. Forsch. 30/II: 1–9.Google Scholar
  26. WoolleyJ.T., G.P.Hicks & R.H.Hageman. 1960. Rapid determination of nitrate and nitrite in plant material. J. Agric. Food Chem. 8: 481–482.CrossRefGoogle Scholar

Copyright information

© Dr. W. Junk b.v. - Publishers 1979

Authors and Affiliations

  • J. van Andel
    • 1
  • H. J. M. Nelissen
    • 1
  1. 1.Biologisch LaboratoriumVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations