Advertisement

Vegetatio

, Volume 39, Issue 2, pp 97–114 | Cite as

Transformation of cover-abundance values in phytosociology and its effects on community similarity

  • E. van der Maabel
Article

Summary

Various cover and cover-abundance scales are compared, together with some current transformations, including the angular transformation and logarithmic transformations. A new cover-abundance scale, being a fully numerical, extended Braun-Blanquet scale is introduced under the name ordinal scale. The transformation of cover-abundance data is discussed in terms of a general transformation function y=xwand it is shown that by applying different values of w to the ordinal scale all other scales can be approached, ranging from the presence-absence transformation for w=0 to to the Tüxen & Ellenberg cover scale for w=4.

The effect of the transformation of cover-abundance values on community similarity is shown in three examples: (1) 25 relevés of Arrhenatheretum grassland, being the exampletable used by Mueller-Dombois & Ellenberg; (2) 22 relevés of Spartinetea communities; and (3) 23 relevés of Glauco-Puccinellietalia communities, the latter two sets being taken from selections devised by the Working Group for Data-Processing. In all examples classification and ordination results obtained with intermediate transformations were superior to those obtained with either a strong weighting on mere presence, or an emphasis on dominance. This comparison was based on previous phytosociological experience.

Weighting and standardization are compared with each other. It is concluded (1) that standardization by species has effects similar to those of weighting of rare species with low cover-abundance values; (2) that standar-dization by relevé is similar to weighting the dominant species; and (3) that no standardization and intermediate weighting are hence similar in effect.

It is stated that the relations between weighting and standardization are insufficiently studied and need more attention. A general formula for applying both forms of transformation is presented: y=a xw.

It is supposed that the effect of the amount of weighting will depend on the heterogeneity level of the data-set under study. Indeed some indications were found that weighting the dominant species may help distinguishing lower syntaxonomical units, especially facies, and also higher units, even up to the class level if the communities are characterized by one or a few dominant species.

Some remarks are made on the possible ecological background of the effects of weighting. It is argued that biological (reproduction) processes responsible for the performance of a species are of an exponential nature. Two performance types may be distinguished, viz. the abundance type and the dominance type. Both types may be approached with logarithmic scales.

Keywords

Arrhenatheretum Classification Combined estimation Cover-abundance scale Ordination Phytosociology Salt marsh Similarity Transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AustinM.P. & P.Greig-Smith, 1968. The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J. Ecol. 56: 827–844.Google Scholar
  2. BaileyA.W. & C.E.Poulton, 1968. Plant communities and environmental relationship in a portion of the Tillamook burn, Northwestern Oregon. Ecology: 49: 1–13.Google Scholar
  3. BannisterP. 1966. The use of subjective estimates of coverabundance as the basis for ordination. J. Ecol. 54: 665–674.Google Scholar
  4. BaumB.R. 1977. Reduction of dimensionality for heuristic purposes. Taxon 26: 791–795.Google Scholar
  5. BeckingR.W. (1957). The Zürich-Montpellier school of phytosociology. Bot. Rev. 23: 411–488.Google Scholar
  6. Braun-BlanquetJ. 1946. Über den Deckungswert der Arten in den Pflanzengesellschaften der Ordnung Vaccinio-Piceetalia. Jahresber. Naturforsch. Ges. Graubündens 130: 115–119.Google Scholar
  7. Braun-BlanquetJ. 1964. Pflanzensoziologie, Grundzüge der Vegetationskunde. 3. Aufl. Springer, Wien, New York. XIV + 865 pp.Google Scholar
  8. Braun-BlanquetJ. 1965. Plant sociology: the study of plant communities. Transl. rev. and ed. by C.D.Fuller & H.S.Conard, Hafner, London, 439 pp.Google Scholar
  9. CampbellB.M.: 1978. Similarity coefficients for classifying relevés. Vegetatio 37: 101–109.Google Scholar
  10. CoetzeeB.J. & M.J.A.Werger, 1973. On hierarchical syndrome analysis and the Zürich-Montpellier table method. Bothalia 11: 159–164.Google Scholar
  11. CurtisJ.T. & R.P.McIntosh. 1951. An upland forest continuum in the prairic-forest border region of Wisconsin. Ecology 32: 476–496.Google Scholar
  12. DagnelieP. 1960. Contribution à l'étude des communautés végétales par l'analyse factorielle. Bull. Service Carte Phytogéogr. CNRS B-5: 7–71, 93–195.Google Scholar
  13. DaubenmireR. 1968. Plant communities. A textbook of plant synecology. Harper & Row, New York. XI + 300 pp.Google Scholar
  14. Doing KraftH. 1954. l'Analyse des carrés permanents. Acta Bot. Neerl. 3: 421–425.Google Scholar
  15. EllenbergH. 1956. Aufgaben und Methoden der Vegetationskunde. Ulmer, Stuttgart. 136 pp.Google Scholar
  16. EtterH. 1949. De l'analyse statistique des tableaux de végétation. Vegetatio 1: 147–154.Google Scholar
  17. FeoliE. 1977. A criterion for monothetic classification of phytosociological entities on the basis of species ordination. Vegetatio 33: 147–152.Google Scholar
  18. FrescoL.F.M. 1969. Q-type factor analysis as a method in synecological research. Acta Bot. Neerl. 18: 477–482.Google Scholar
  19. GoodallD.W. 1953–1954. Objective methods for the classification of vegetation. I, II and III. Austr. J. Bot. 1: 39–63, 1: 434–456, 2: 304–324.Google Scholar
  20. GoodallD.W. 1969. A procedure for recognition of uncommon species combinations in sets of vegetation samples. Vegetatio 18: 19–35.Google Scholar
  21. Hogeweg, P. 1976. Topics in biological pattern analysis. Thesis Utrecht, 208 pp.Google Scholar
  22. JensénS. 1978. Influences of transformation of cover values on classification and ordination of lake vegetation. Vegetatio 37: 19–31.Google Scholar
  23. KortekaasW.M., E.van derMaarel & W.G.Beeftink. 1976. A numerical classification of European Spartina communities. Vegetatio 33: 51–60.Google Scholar
  24. KrajinaV.J. 1960. Can we find a common platform for the different schoolt of forest-type classification? Silva Fenn. 105: 50–59.Google Scholar
  25. Lausi, D., W.G. Beeftink & W.M. Kortekaas, 1979. Survey of salt marsh relevés, selected for the Working-Group for Data-Processing in Phytosociology. In prep.Google Scholar
  26. Londo, G. 1971. Patroon en proces in duinvalleivegetaties langs een gegraven meer in de Kennemerduinen. (With summary). Thesis Nijmegen. 279 pp.Google Scholar
  27. LondoG. 1976. The decimal scale for relevés of permanent quadrats. Vegetatio 33: 61–64.Google Scholar
  28. Maarel, E. van der 1966. Over vegetatiestructuren,-relaties en-systemen, in het bijzonder in de duingraslanden van Voorne. (With summary). Thesis Utrecht, 170 pp.Google Scholar
  29. MaarelE.van der 1969. On the use of ordination models in phytosociology. Vegetatio 19: 21–46.Google Scholar
  30. Maarel, E. van der 1972. On the transformation of cover-abundance values in photosociology. Report Botanical Laboratory, Nijmegen, 12 pp.Google Scholar
  31. MaarelE.van der 1972a. Ordination of plant communities on the basis of their plant genus, family and order relationships. In E.van derMaarel & R.Tüxen (ed) Grundfragen und Methoden der Pflanzensoziologie. Ber. Int. Symp. Rinteln 1970, p. 183–192. Junk, Den Haag.Google Scholar
  32. MaarelE.van der 1979. Multivariate methods in phytosociology with reference to the Netherlands. In M.J.A.Werger (ed.) The science of vegetation, p. 161–225. Junk, The Hague.Google Scholar
  33. MaarelE.van der & L.F.M.Fresco. 1975. Zusammenhänge zwischen Vegetation und Substrat erläutert an Ordinations-modellen. In: Vegetation und Substrat. Ber. Int. Symp. Rinteln 1969, p. 233–253. Cramer, Vaduz.Google Scholar
  34. MaarelE.van der, J.G.M.Janssen & J.M.W.Louppen. 1978. TABORD, a program for structuring phytosociological tables. Vegetatio 38: 143–156.Google Scholar
  35. MaarelE.van der, L.Orlóci & S.Pignatti. 1976. Data-processing in phytosociology, retrospeet and anticipation. Vegetatio 32: 65–72.Google Scholar
  36. Meyer DreesE. 1949. Combined taxation and presence in analysing and comparing association tables. Vegetatio 2: 43–46.Google Scholar
  37. Moore, J.J. 1966. PHYTO. Re-arranging a phytosociological array according to the principles of Braun-Blanquet. Programs in Fortran II. Mimeogr. Paper Dublin. 4 pp.Google Scholar
  38. Mueller-DomboisD. & H.Ellenberg. 1974. Aims and methods of vegetation ecology. Wiley, New York, XXX + 547 pp.Google Scholar
  39. Noy-MeirI. 1973. Data transformation in ecological ordination. I. Some advantages of non-centering. J. Ecol. 61: 329–341.Google Scholar
  40. Noy-MeirI.D. Walker & W.T.Williams, 1975. Data transformations in ecological ordination II. On the meaning of data standardization. J. Ecol. 63: 779–800.Google Scholar
  41. OrlóciL. 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague. IX + 451 pp.Google Scholar
  42. Noy-MeirI. & R.H.Whittaker. 1978: Recent developments in continuous multivariate techniques. In R.H.Whittaker (ed), Ordination of plant communities, p. 337–378, Junk, The Hague.Google Scholar
  43. Roskam, E. 1971. Programme ORDINA: Multidimensional ordination of observation vectors. Programma Bull. 16, Psychology Lab. Nijmegen, 8 pp.Google Scholar
  44. SchmidP. & N.Kuhn. 1970. Automatische Ordination von Vegetationsaufnahmen in pflanzensoziologischen Tabellen. Naturwissenschaften 57: 462.Google Scholar
  45. SchwickerathM. 1931. Die Gruppenabundanz (Gruppenmächtigkeit); ein Beitrag zur Begriffsbildung in der Pflanzensoziologie. Englers Bot. Jahrb. 64: 1–16.Google Scholar
  46. SchwickerathM. 1938. Neue Beiträge zur Kenntnis der Gruppenmächtigkeit der Assoziation. Englers Bot. Jahrb. 68: 497–514.Google Scholar
  47. SchwickerathM. 1940. Die Artmächtigkeit. Fedde Rep. Beih. 121: 48–52.Google Scholar
  48. SegalS. & V.Westhoff. 1950. Die vegetationskundliche Stellung von Carex buxbaumii in Europa, besonders in den Niederlanden. Acta Bot. Neerl. 8: 304–329.Google Scholar
  49. ShimweliD.W. 1971. The description and classification of vegetation. Sidgwick & Jackson, London, XIV + 322 pp.Google Scholar
  50. Sissingh, G. 1950. Onkruid-associaties in Nederland (With French summary). Thesis Wageningen, 224 pp. + hijl.Google Scholar
  51. SmartP.F.M., S.E.Meacock & J.M.Lambert. 1976. Investigations into the properties of quantitative vegetational data. II. Further data type comparisons. J. Ecol. 64: 47–78.Google Scholar
  52. TüxenR. & H.Ellenberg. 1937. Der systematische und ökologische Gruppenwert. Ein Beitrag zur Begriffsbildung und Methodik der Pflanzensoziologie. Mitt. Flor.-Soz. Arbeitsgem. 3: 171–184.Google Scholar
  53. Westhoff, V. 1947. The vegetation of dunes and salt marshes on the Dutch islands of Terschelling, Vlieland and Texel Thesis Utrecht, 131 pp.Google Scholar
  54. WesthoffV. & E.van derMaarel. 1978. The Braun-Blanquet approach. 2nd ed. In: R.H.Whittaker (ed). Classification of plant communities, p. 287–399. Junk, The Hague.Google Scholar
  55. WilliamsW.T. & J.M.Lambert. 1959. Multivariate methods in plant ecology. I. Association analysis in plant communities. J. Ecol. 47: 83–101.Google Scholar
  56. WishartD. 1975. CLUSTAN 1c user manual. Computer Centre University College London, 124 pp.Google Scholar

Copyright information

© Dr. W. Junk b.v. - Publishers 1979

Authors and Affiliations

  • E. van der Maabel
    • 1
  1. 1.Division of GeobotanyNijmegenThe Netherlands

Personalised recommendations