Acta Applicandae Mathematica

, Volume 7, Issue 2, pp 113–135 | Cite as

On the geometry of the planar 4-bar mechanism

  • C. G. Gibson
  • P. E. Newstead


The paper seeks to elucidate the geometry of a simple engineering mechanism, comprising four bars smoothly jointed together to form a movable quadrilateral with one fixed side. The configurations of this mechanism correspond to the points of an elliptic curve, to which is associated interesting geometry and Morse theory. By appropriate projection, this curve yields the 2-parameter family of plane curves described by points rigidly attached to the side of the quadrilateral opposite the fixed side: the geometry of the general projection is related to the configuration of lines on a Segre quartic surface.

AMS (MOS) subject classification (1980)


Key words

Mechanism algebraic curve real elliptic curve Morse Theory Segre quartic surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alling, N. L.: Real Elliptic Curves, North-Holland Mathematics Studies 54, North-Holland, Amsterdam, 1981.Google Scholar
  2. 2.
    Darboux, M. G.: ‘De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan’, Bull. Sci. Math. (1879), 109–128.Google Scholar
  3. 3.
    Gibson, C. G. and Selig, J.: ‘On the Motion of a Spherical Quadrilateral’, Preprint, Open University, Milton Keynes, 1985.Google Scholar
  4. 4.
    Grashof, F.: Theoretische Maschinenlehre, Vol. 2, Voss, Leipzig, 1883.Google Scholar
  5. 5.
    Harris, J.: Curves in Projective Space, Séminaire de Mathématiques Supérieures, Université de Montréal, Les Presses de l'Université de Montreal, 1982.Google Scholar
  6. 6.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.Google Scholar
  7. 7.
    Hunt, K. R.: Kinematic Geometry of Mechanisms, Oxford engineering Science Series, Clarendon Press, Oxford, 1978.Google Scholar
  8. 8.
    Marsh, D.: ‘Geometry of the 4-Bar Mechanism’, M.Sc. Thesis, Liverpool Univ. (1983).Google Scholar
  9. 9.
    Milnor, J.: Morse Theory, Annals of Mathematics Studies, No. 51, Princeton Univ. Press, Princeton, N.J., 1963.Google Scholar
  10. 10.
    Morley, F. V.: ‘An Analytical Treatment of the Three-Bar Curve’. Proc. London Math. Soc. 21 (1923), 140–160.Google Scholar
  11. 11.
    Mumford, D.: Algebraic Geometry I: Complex Projective Varieties, Springer-Verlag, New York, 1976.Google Scholar
  12. 12.
    Mumford, D.: Lectures on Curves on an Algebraic Surface, Ann. Maths. Studies, No. 59, Princeton Univ. Press, Princeton, N.J., 1966.Google Scholar
  13. 13.
    Shafarevich, I. R.: Basic Algebraic Geometry, Springer-Verlag, New York, 1977.Google Scholar
  14. 14.
    Wall, C. T. C.: ‘Nets of Quadrics and Theta Characteristics of Singular Curves’, Phil. Trans. Roy. Soc. (A) 289 (1978), 229–269.Google Scholar
  15. 15.
    Wall, C. T. C.: ‘Singularities of Nets of Quadrics’, Comp. Math. 42 (1981), 187–212.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • C. G. Gibson
    • 1
  • P. E. Newstead
    • 1
  1. 1.Department of Pure MathematicsUniversity of LiverpoolLiverpoolEngland

Personalised recommendations