Genetic Resources and Crop Evolution

, Volume 39, Issue 2, pp 71–88 | Cite as

Genetic relationships within Vigna unguiculata (L.) Walp. based on isozyme analyses

  • Leonard Panella
  • Paul Gepts
Article
  • 78 Downloads

Summary

Isozyme analyses of genetic diversity in Vigna unguiculata were performed to determine genetic relationships and level of genetic diversity between wild and cultivated cowpea. Thirty-four cultivated accessions of V. unguiculata, 56 wild accessions of V. unguiculata, and six accessions representing five related wild Vigna species were analyzed. Ten enzyme systems were polymorphic within Vigna unguiculata: AAT, ACO, G6PDH, DIAP, LAP, MUE, ME MDH, PRX, and SOD. Fourteen of 24 putative loci (58%) were polymorphic within wild V. unguiculata, but only one locus (4%) was polymorphic within cultivated cowpea; when five related Vigna species were examined, 21 of the 24 bands of activity showed polymorphisms (88%) adding 33 alleles to the 48 identified within V. unguiculata. In one F2 population of 68 plants (UCDVg 36 × UCDVg 21) a loose linkage was indicated between Diap-2 and G6pd-12 = 15.39; p = 0.004) with an estimated distance of 36.0 cM ± 5.02 (recombination (r) = 0.31). Also in another F2 population of 38 plants (CB 88 × UCDVg 21) a loose linkage was indicated between Lap-1 and Prx (\gC2 = 9.62; p = 0.047) with an estimated distance of 39.8 cM ± 7.0 (r = 0.33). Total genetic diversity (HT) was 0.085 over all of the accessions including the one classified as V. nervosa. Within accession diversity (Hs) approached zero and between accession diversity (Dsi) was responsible for all of the genetic diversity present. Therefore the coefficient of gene differentiation (GST = DSTIIT) approached 1. Absolute gene differentiation (Dm) was 0.087. Two of the nine segregations in this study were skewed. In general, results of this study concurred with the taxonomic classification within V. unguiculata and provided a strong indication that a severe genetic bottleneck occurred during the domestication process of cowpea.

Key words

cowpea crop evolution/domestication genetic diversity isozyme Vigna unguiculata 

Abbreviations

AAT

aspartate amino-transferase

ACO

aconitase

ALD

aldolase

AUS

Australia

BDI

Burundi

BWA

Botswana

CHN

China

CMR

Cameroon

DIAP

diaphorase

DZA

Algeria

ETH

Ethiopia

G6PDH

glucose-6-phosphate dehydrogenase

GDH

glutamate dehydrogenase

GHA

Ghana

GUY

Guyana

IDH

isocitrate dehydrogenase

IND

India

KEN

Kenya

LAO

Laos

LAP

leucine aminopeptidase

MDH

malate dehydrogenase

ME

malic enzyme

MEX

Mexico

MOZ

Mozambique

MUE

methylumelliferyl-esterase

MWI

Malawi

MYS

Malaysia

NER

Niger

NGA

Nigeria

PRX

peroxidase

RBSC

ribulose-bisphosphate carboxylase

SEN

Senegal

SLE

Sierra Leone

SOD

superoxide dismutase

TGO

Togo

TZA

Tanzania

USA

United States of America

XDH

xanthine dehydrogenase

ZAF

South Africa

ZAR

Zaire

ZIM

Zimbabwe

ZMB

Zambia

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassiri, A. & M.W. Adams, 1978. An electrophoretic survey of seedling isozymes in several Phaseolus species. Euphytica 27: 447–459.Google Scholar
  2. Baudoin, J.P. & R. Maréchal, 1985. Genetic diversity in Vigna. In: S.R. Singh & K.O. Rachie (Eds.), Cowpea Research, Production and Utilization, pp. 3–11, John Wiley & Sons, Chichester.Google Scholar
  3. Brewbaker, J.L., C. Nagai & E. Liu H, 1985. Genetic polymorphisms of 13 maize peroxidases. J. Hered. 76: 159–167.Google Scholar
  4. Brewer, G.J. & C.F. Sing, 1970. An Introduction to Isozyme Techniques. Academic Press, New York.Google Scholar
  5. Brown, A.H.D., 1983. Barley. In: S.D. Tanksley & T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, pp. 55–78, Elsevier, Amsterdam.Google Scholar
  6. Cardy, B.J. & L.W. Kannenberg, 1982. Allozymic variability among maize inbred lines and hybrids: applications for cultivar identification. Crop Sci. 22(5): 1016–1020.Google Scholar
  7. Cardy, B.J., C.W. Stuber & M.M. Goodman, 1980. Techniques for Starch Gel Electrophoresis of Enzymes From Maize (Zea mays L.). Department of Statistics Mimeo Series, No. 1317, North Carolina State University, Raleigh, NC.Google Scholar
  8. Doebley, J.F., M.M. Goodman & C.W. Stuber, 1984. Isoenzymation variation in Zea (Gramineae). Syst. Bot. 9(2): 203–218.Google Scholar
  9. Faris, D.G., 1965. The origin and evolution of the cultivated forms of Vigna sinensis. Can. J. Genet. Cytol. 7: 433–452.Google Scholar
  10. Fery, R.L., 1990. The cowpea: Production, utilization, and research in the United States. In: J. Janick (Ed.), Horticultural Reviews, pp. 197–222, Timber Press, Portland, OR.Google Scholar
  11. Garvin, D.F., M.L. Roose & J.G. Waines, 1989. Isozyme genetics and linkage in tepary bean, Phaseolus acutifolius A. Gray. J. Hered. 80: 373–376.Google Scholar
  12. Gaur, P.M. & A.E. Slinkard, 1989. Inheritance and linkage of isozyme coding genes in chickpea. J. Hered. 81: 455–461.Google Scholar
  13. Gaur, P.M. & A.E. Slinkard, 1990. Genetic control and linkage relations of additional isozyme markers in chick-pea. Theor. Appl. Genet. 80: 648–656.Google Scholar
  14. Gepts, P., V. Llaca, R.O. Nodari & L. Panella (1992). Analysis of seed proteins, isozymes, and RFLPs for genetic and evolutionary studies in Phaseolus. In: H.F. Linskens & J.F. Jackson (Eds.), Seed Analysis, Springer-Verlag, Berlin, in press.Google Scholar
  15. Goodman, M.M. & C.W. Stuber, 1983. Maize. In: S.D. Tanksley & T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, pp. 1–34, Elsevier, Amsterdam.Google Scholar
  16. Hamrick, J.L. & M.J.W. Godt, 1990. Allozyme diversity in plant species. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir (Eds.), Plant Population Genetics, Breeding, and Genetic Resources, pp. 43–63, Sinauer Assocites, Inc., Sunderland, MA.Google Scholar
  17. Harlan, J.R. & J.M.J. de Wet, 1971. Toward a rational classification of cultivated plants. Taxon 24(4): 509–517.Google Scholar
  18. Havey, M.J. & F.J. Muehlbauer, 1989. Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor. Appl. Genet. 77: 395–401.Google Scholar
  19. Jaaska, V. & V. Jaaska, 1988. Isoenzyme variation in the genera Phaseolus and Vigna (Fabaceae) in relation to their systematics: aspartate aminotransferase and superoxide dismutase. Pl. Syst. Evol. 159: 145–159.Google Scholar
  20. Kephart, S.R., 1990. Starch gel electrophoresis of plant isozymes: A comparative analysis of techniques. Amer. Bot. 77(5): 693–712.Google Scholar
  21. Kiang Y.T. & M.D. Gorman, 1983. Soybean. In: S.D. Tanksley & T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, pp. 295–328, Elsevier, Amsterdam.Google Scholar
  22. Kimura, M., 1983, The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.Google Scholar
  23. Koenig, R. & P. Gepts, 1989a. Allozyme diversity in wild Phaseolus vulgaris further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78: 809–817.Google Scholar
  24. Koenig, R. & P. Gepts, 19896. Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris). J. Hered. 80: 455–459.Google Scholar
  25. Lush, W.M. & L.T. Evans, 1981. The domestication and improvement of cowpeas (Vigna unguiculata (L.) Walp.). Euphytica 30: 379–587.Google Scholar
  26. Mancini, R., C. De Pace, G.T. Scarascia Mugnozza, V. Delre & D. Bittori, 1989. Isozyme gene markers in Vicia faba L. Theor. Appl. Genet. 77: 657–667.Google Scholar
  27. Maréchal, R., J.M. Mascherpa & F. Stainier, 1978. Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base données de morphologiques et polliniques, traitées par l'analyse informatique. Boissiera 28: 1–273.Google Scholar
  28. McIntyre, C.L. 1988. Variation at isozyme loci in Triticeae. Pl. Syst. Evol. 160: 123–142.Google Scholar
  29. McLeod, M.J., S.I. Guttman & W.H. Eshbaugh, 1983. Peppers. In: S.D. Tanksley & E.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, pp. 189–202, Elsevier, Amsterdam.Google Scholar
  30. Mithen, R., 1987. The African genepool of Vigna. I. V. nervosa and V. unguiculata from Zimbabwe. FAO/IBPGR Pl. Genet. Res. News. 70: 13–19.Google Scholar
  31. Mithen, R. & H. Kibblewhite (in press). Taxonomy and ecology of Vigna unguiculata in south-central Africa. Kirkia.Google Scholar
  32. Morden, C.W., J.F. Doebley & K.F. Schertz, 1989. Allozyme variation in Old World races of Sorghum bicolor (Poaceae). Amer. J. Bot. 76: 247–255.Google Scholar
  33. Muehlbauer, F.J., N.F. Weeden & D.L. Hoffman, 1989. Inheritance and linkage relationships of morphological and isozyme loci in lentil (Lens Miller). J. Hered. 80: 298–303.Google Scholar
  34. Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70: 3321–3323.Google Scholar
  35. Nodari, R.O., S.M. Tsai, R.L. Gilbertson & P. Gepts (1992). Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor. Appl. Genet., in press.Google Scholar
  36. Panella, L. & P.L. Gepts, 1990. Variation in Seed Storage Protein of Wild and Cultivated Cowpeas. Agr. Abstr. p. 103 (ASA-CSSA-SSSA Annual Meetings, 21 Oct–26 Oct, 1990, San Antonio, TX).Google Scholar
  37. Quiros, C.F., 1983. Alfalfa, Luzerne. In: S.D. Tanksley & T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, pp. 253–294, Elsevier, Amsterdam.Google Scholar
  38. Rachie, K.O., 1985. Introduction. In: S.R. Singh & K.O. Rachie (Eds.), Cowpea Research, Production, and Utilization, pp. xxi-xxvii, John Wiley & Sons, Chichester.Google Scholar
  39. Rawal, K.M., 1975. Natural hybridization among wild, weedy, and cultivated Vigna unguiculata L. Walp. Euphytica 24: 699–707.Google Scholar
  40. Sakupwanya, S., R. Mithen & T. Mutangandura-Mhlanga, 1989. Studies on the African Vigna genepool II. Hybridization with Vigna unguiculata var. tenuis and var. stenophylla. FAO/IBPGR Pl. Genet. Res. News 78/79: 5–9.Google Scholar
  41. Schinkel, C. & P. Gepts, 1989. Allozyme variability in the tepary bean. Phaseolus acutifolius A. Gray. Plant Breeding 102: 182–195.Google Scholar
  42. Second, G., 1982. Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 loci. Jpn. J. Genet. 57: 25–57.Google Scholar
  43. Selander, R.K., M.H. Smith, S.Y. Yang, W.E. Johnson & J.B. Gentry, 1971. Biochemical polymorphism and systematics in the genus Peromyscus: I. Variation in the old field mouse (Peromyscus polionotus). Univ. Tex. Pub. 7103: 49–90.Google Scholar
  44. Shaw, C.R. & R. Prasad, 1970. Starch gel electrophoresis of enzymes - A compilation of recipes. Bio. Genet. 4: 297–320.Google Scholar
  45. Singh, S.P., J.A. Gutiérrez, A. Molina, C. Urrea & P. Gepts, 1991a. Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. Crop Sci. 31(1): 23–29.Google Scholar
  46. Singh, S.P., R. Nodari & P. Gepts, 1991b. Genetic diversity in cultivated common bean: I. Allozymes. Crop Sci. 31(1): 19–23.Google Scholar
  47. Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. 1st Edition, A Series of Books in Biology, W.H. Freeman and Company, San Francisco, CA.Google Scholar
  48. Sprecher, S.L., 1988. Allozyme Differentiation Between Gene Pools in Common Bean (Phaseolus vulgaris L.), With Special Reference to Malawian Germplasm, Ph.D., Michigan State University (UMI Diss. Inform. Serv. #8900102).Google Scholar
  49. Suiter, K.A., J.F. Wendel & J.S. Case, 1983. LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. J. Hered. 74: 203–204.Google Scholar
  50. Vaillancourt, R.E. & N.F. Weeden, 1990. Genetic Diversity in the Cowpea and Its Wild Relatives. Agr. Abstr. p. 114 (ASA-CSSA-SSSA Annual Meetings, 21 Oct–26 Oct, 1990, San Antonio, TX).Google Scholar
  51. Vallejos, E., 1983. Enzyme activity staining. In: S.D. Tanksley& T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, pp. 469–516, Elsevier, Amsterdam.Google Scholar
  52. Verdcourt, B., 1970. Studies in the Leguminosae-Papillionoideae for the ‘Flora of Tropical East Africa’: IV. Kew Bull. 24: 507–569.Google Scholar
  53. Weeden, N.F., 1984a. Distinguishing among white seeded bean cultivars by means of allozyme genotypes. Euphytica 33: 199–208.Google Scholar
  54. Weeden, N.F., 1984b. Linkage between the gene coding the small subunit of ribulose bisphosphate carboxylase and the gene coding malic enzyme in Phaseolus vulgaris. Ann. Rpt. Bean Imp. Coop. 27: 123–124.Google Scholar
  55. Weeden, N.F., 1985. An isozyme linkage map for Pisum sativum. In: P.D. Hebblethwaite, M.C. Heath & T.C.K. Dawkins (Eds.), The Pea Crop. A Basis for Improvement, pp. 55–66, Butterworths, London.Google Scholar
  56. Weeden, N.F., 1986. Genetic confirmation that the variation in the zymograms of 3 enzyme systems is produced by allelic polymorphism. Ann. Rpt. Bean Imp. Coop. 29: 117–118.Google Scholar
  57. Weeden, N.F. & C.Y. Liang, 1985. Detection of a linkage between white flower color and Est-2 in common bean. Ann. Rpt. Bean Imp. Coop. 28: 87–88.Google Scholar
  58. Weeden, N.F. & L.D. Gottlieb, 1980. The genetics of chloroplast enzymes. J. Hered. 71: 392–396.Google Scholar
  59. Weeden, N.F. & J.F. Wendel, 1989. Genetics of plant isozymes. In: D.E. Soltis & P.S. Soltis (Eds.), Isozymes in Plant Biology, pp. 46–72, Dioscorides Press, Portland, OR.Google Scholar
  60. Zamir, D. & Y. Tadmor, 1986. Unequal segregation of nuclear genes in plants. Bot. Gaz. 147(3): 355–358.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Leonard Panella
    • 1
  • Paul Gepts
    • 1
  1. 1.Department of Agronomy & Range ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations