, Volume 253, Issue 1–3, pp 103–121 | Cite as

The role of microorganisms in mobilization and fixation of phosphorus in sediments

  • René Gächter
  • Joseph S. Meyer


Cycling of phosphorus (P) at the sediment/water interface is generally considered to be an abiotic process. Sediment bacteria are assumed to play only an indirect role by accelerating the transfer of electron from electron donors to electron acceptors, thus providing the necessary conditions for redox-and pH-dependent, abiotic sorption/desorption or precipitation/dissolution reactions.

Results summarized in this review suggest that

  1. (1)

    in eutrophic lakes, sediment bacteria contain as much P as settles with organic detritus during one year

  2. (2)

    in oligotrophic lakes, P incorporated in benthic bacterial biomass may exceed the yearly deposition of bioavailable P several times

  3. (3)

    storage and release of P by sediment bacteria are redox-dependent processes

  4. (4)

    an appreciable amount of P buried in the sediment is associated with the organic fraction

  5. (5)

    sediment bacteria not only regenerate PO4, they also contribute to the production of refractory, organic P compounds, and

  6. (6)

    in oligotrophic lakes, a larger fraction of the P settled with organic detritus is converted to refractory organic compounds by benthic microorganisms than in eutrophic lakes.


From this we conclude that benthic bacteria do more than just mineralize organic P compounds. Especially in oligotrophic lakes, they also may regulate the flux of P across the sediment/water interface and contribute to its terminal burial by the production of refractory organic P compounds.

Key words

bacteria phosphorus phosphorus cycling in lakes sediments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barsdate, R. J., T. Fenchel & R. T. Prentki, 1974. Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.Google Scholar
  2. Borsheim, K. Y., G. Bratbak & M. Heldal, 1990. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. envir. Microbiol. 56: 352–356.Google Scholar
  3. Boström, B., M. Jannson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  4. Boström, B., I. Ahlgen & R. Bell, 1985. Internal nutrient loading in a eutrophic lake reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335–3339.Google Scholar
  5. Boström, B., 1985. The role of Microcystis colonies, its mucilage and associated bacteria, for nutrient fluxes from sediments to lake water. — A working hypothesis. In: M. Enell, W. Graneli & L.-A. Hansson (eds), Proc. 13th. Nordic Sump. on Sediments, Anneboda, Sweden: 6–8.Google Scholar
  6. Boström, B., A.-K. Pettersson & I. Ahlgren, 1989. Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow, eutrophic lake. Aquat. Sci. 51: 153–178.Google Scholar
  7. Boström, B. & E. Törnblom, 1990. Bacterial production, heat production and ATP-turnover in shallow marine sediments. Termochim. Acta 172: 147–156.Google Scholar
  8. Brassard, P. & J. C. Auclair, 1984. Orthophosphate uptake rate constants are mediated by the 103–104 molecular weight fraction in Shield lakewater. Can. J. Fish. aquat. Sci. 41: 166–173.Google Scholar
  9. Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Appl. envir. Microbiol. 49: 1488–1493.Google Scholar
  10. Bratback, H. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Appl. envir. Microbiol. 48: 755–757.Google Scholar
  11. Currie, D. J. & J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.Google Scholar
  12. Deinema, M. H., L. H. A. Habets, J. Scholten, E. Turkstra & H. A. A. M. Webers, 1980. The accumulation of polyphosphate in Acinetobacter spp. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 9: 275–279.Google Scholar
  13. Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.Google Scholar
  14. Einsele, W. & H. Vetter, 1938. Untersuchungen über die Entwicklung der physikalischen und chemischen Verhältnisse im Jahreszyklus in einem mässig eutrophen See (Schleinsee bei Langenargen). Int. Revue ges. Hydrobiol. Hydrogr. 36: 285–324.Google Scholar
  15. Fenchel, T. & T. H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press, London.Google Scholar
  16. Fleischer, S., 1983. Microbial phosphorus release during enhanced glycolysis. Naturwissenschaften 70: 415–416.Google Scholar
  17. Fleischer, S., 1986. Aerobic uptake of Fe(III)-precipitated phosphorus by microorganisms. Arch. Hydrobiol. 107: 269–277.Google Scholar
  18. Fricker, Hj., 1980. OECD Eutrophication program — Regional Project Alpine Lakes. Swiss Federal Board for Environmental Protection, Bern, Switzerland.Google Scholar
  19. Gächter, R. & J. Bloesch, 1985. Seasonal and vertical in the C:P ratio of suspended and settling seston of lakes. Hydrobiologia 128: 193–200.Google Scholar
  20. Gächter, R., 1987. Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. Schweiz. Z. Hydrol. 49: 170–185.Google Scholar
  21. Gächter, R. & A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol. Oceanogr. 30: 364–371.Google Scholar
  22. Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542–1558.Google Scholar
  23. Gächter, R., A. Tessier, E. Szabo & R. Carignan, 1991. Measurements of total dissolved phosphorus in small volumes of iron-rich interstitial water. Aquatic Sciences (in Press).Google Scholar
  24. Hayes, F. R. & J. E. Phillips, 1958. Lake water and sediment. IV. Radiophosphorus equilibrium with mud, plants, and bacteria under oxidized and reduced conditions. Limnol. Oceanogr. 3: 459–475.Google Scholar
  25. Hoffmeister, D., D. Weltin & W. Dott, 1990. Untersuchungen zur bakteriellen Phosphatelimninierung. II. Mitteilung: Physiologische Untersuchungen an Reinkulturen. Wasser, Abwasser, gwf. 131: 270–277.Google Scholar
  26. Hupfer, M. & D. Uhlmann, 1990. Phosphate immobilization by microorganisms in lake sediments. Sediment/Water Interactions 5th International Symposium. August 6–9, 1990. Uppsala.Google Scholar
  27. Hupfer, M. & D. Uhlmann, 1991. Microbially mediated phosphorus exchange across the mud-water interface. Verh. int. Ver. Limnol. 24: 2999–3003.Google Scholar
  28. Jackson, T. A. & D. W. Schindler, 1975. The biochemistry of phosphorus in an experimental lake environment: evidence for the formation of humic-metal-phosphate complexes. Verh. int. Ver. Limnol. 19: 211–221.Google Scholar
  29. Jewell, W. L. J. & P. L. McCarty, 1968. Aerobic decomposition of algae and nutrient regeneration. Stanford Univ. Techn. Rep. 91.Google Scholar
  30. Jones, J. G., M. J. L. G. Orlandi & B. M. Simon, 1979. A microbiological study of sediments from the Cumbrian lakes. J. Gen. Microbiol. 115: 37–48.Google Scholar
  31. Jordan, M. J., G. E. Likens & B. J. Peterson, 1985. Organic carbon budget. In: G. E. Likens (ed.). An Ecosystem Approach to Aquatic Ecology. Mirror Lake and its Environment. Springer-Verlag. ISBN 0-387-96106-2.Google Scholar
  32. Kampfer, P., A. Eisenträger, V. Hergt & W. Dott, 1990. Untersuchungen zur bakteriellen Phosphatelimninierung. I. Mitteilung: Bakterienflora und bakterielles Phosphatspeicherungsvermögen in Abwasserreinigungsanlagen. Wasser, Abwasser gwf. 131: 156–164.Google Scholar
  33. Kulaev, I. S., 1979. The biochemistry of inorganic polyphosphates. Wiley.Google Scholar
  34. Laczko, E., 1988. Abbau von planktischem Detritus in den Sedimenten voralpiner Seen: Dynamik der beteiligten Mikroorganismen und Kinetik des biokatalysierten Phosphoraustausches. Ph. D. Thesis Nr.8371, Eidgenössische Tech. Hochschule (ETH), Zürich, Switzerland.Google Scholar
  35. Lean, D. R. S., 1973a. Phosphorus dynamics in lake water. Science 179: 678–680.Google Scholar
  36. Lean, D. R. S., 1973b. Movements of phosphorus between its biologically important forms in lake water. J. Fish. Res. Bd. Can. 30: 1525–1536.Google Scholar
  37. Lean, D. R. S., 1984. Metabolic indicators for phosphorus limitation. Verh. int. Ver. Limnol. 22: 211–213.Google Scholar
  38. Lean, D. R. S. & F. H. Rigler, 1974. A test of the hypothesis that abiotic phosphate complexing influences phosphorus kinetics in the epilimnetic lake water. Limnol. Oceanogr. 19: 787–788.Google Scholar
  39. Lean, D. R. S. & E. White, 1983. Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Can. J. Fish. aquat. Sci. 40: 147–155.Google Scholar
  40. Levine, S. N., 1975. A preliminary investigation of orthophosphate concentration and the uptake of orthophosphate by seston in two Canadian Shield lakes. MS. Thesis, University of Manitoba, pp. 151.Google Scholar
  41. Levine, S. N. & D. W. Schindler, 1980. Radiochemical analysis of orthophosphate concentrations and seasonal changes in the flux of orthophosphate to seston in two Canadian Shield lakes. Can. J. Fish. aquat. Sci. 37: 479–487.Google Scholar
  42. Likens, G. E., 1985. The Lake-Ecosystem. In: G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Mirror Lake and its Environment. Springer-Verlag. ISBN 0-387-96106-2.Google Scholar
  43. Mortimer, C. H., 1941–1942. The exchange of dissolved substances between mud and water in lakes. 1 and 2. 3 and 4. J. Ecol. 29: 280–329; 30: 147–201.Google Scholar
  44. Mortimer, C. H., 1971. Chemical exchanges between sediments and water in the Great Lakes — speculations and probable regulatory mechanisms. Limnol. Oceanogr. 16: 387–404.Google Scholar
  45. Osgood, R. A., 1988. A hypothesis on the role of Aphanizomenon in translocating phosphorus. Hydrobiologia 169: 69–79.Google Scholar
  46. Planas, D., 1978. Phosphorus uptake rates in planktonic communities related to light gradient. Verh. int. Ver. Limnol. 20: 2731–2736.Google Scholar
  47. Psenner, R., R. Pucsko & M. Sager, 1984. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Arch. Hydrobiol./ Suppl. 70: 111–155.Google Scholar
  48. Psenner, R. & R. Pucsko, 1988. Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 43–59.Google Scholar
  49. Psenner, R., B. Boström, M. Dinka, K. Pettersson, R. Puckso & M. Sager, 1988. Sediment phosphorus group: Working group summaries and proposals for future research. 4. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 98–110.Google Scholar
  50. Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea water. In: M. N. Hill (ed.), The Sea, v. 2. Interscience: 26–77.Google Scholar
  51. Riemann, B. & R. T. Bell, 1990. Advances in estimating bacterial biomass and growth in aquatic systems; Arch. Hydrobiol. 118: 385–402.Google Scholar
  52. Rigler, F. H., 1973. A dynamic view of the phosphorus cycle in lakes. In: E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphorus Handbook. John Wiley & Sons: 539–572.Google Scholar
  53. Shuter, B. J., 1978. Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnol. Oceanogr. 23: 1248–1255.Google Scholar
  54. Sinke, A. J. C. & T. E. Cappenberg, 1988. Influence of bacterial processes on the phosphorus release from sediments in the eutrophic Loosdrecht Lakes, The Netherlands. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 5–13.Google Scholar
  55. Stöckli, A. P., 1985. Die Rolle der Bakterien bei der Regeneration von Nährstoffen aus Algenexkreten und Autolyseprodukten. Experimente mit gekoppelten, kontinuierlichen Kulturen. Ph. D. Thesis Nr. 7850, Eidgenössische Technische Hochschule (ETH) Zürich. 183 pp.Google Scholar
  56. Uhlmann, D. & H.-D. Bauer, 1988. A remark on microorganisms in lake sediments with emphasis on polyphosphate-accumulating bacteria. Int. Revue ges. Hydrobiol. 73: 703–708.Google Scholar
  57. Uhlmann, D., I. Röske, M. Hupfer & G. Ohms, 1990. A simple method to distinguish between polyphosphate and other phosphate fractions of activated sludge. Wat. Res. 24: 1355–1360.Google Scholar
  58. Vladstein, O., A. Jensen, Y. Olsen & H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33: 489–503.Google Scholar
  59. Van Groenestijn, J. W., 1988. Accumulation and degradation of polyphosphate in Acinetobacter sp. Ph. D. Thesis, Agricultural University, Wageningen, The Netherlands.Google Scholar
  60. Vollenweider, R. A., 1974. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook Nr. 12 ISBN 0-632-00531-9. 225 pp.Google Scholar
  61. Wentzel, M. C., L. H. Lötter, R. E. Loewenthal & G. V. R. Marais, 1986. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water SA 12: 209–224.Google Scholar
  62. Wetzel, R. G., 1983. Limnology. Second Edition. Saunders College Publishing. ISBN 0-03-057931-9. 767 pp.Google Scholar
  63. Williams, J. D. H., 1973. Phosphorus in the sediments of Okanagan mainstem lakes. Supplement report to task 121 report by B. E. St. John entitled ‘The limnogeology of the Okanagan mainstem lakes’ (not published).Google Scholar
  64. Williams, J. D. H., T. P. Murphy & T. Mayer, 1976. Rates of accumulation of phosphorus forms in Lake Erie sediments. J. Fish. Res. Bd. Can. 33: 430–439.Google Scholar
  65. Wolf, G., 1986. Die Verteilung des partikulären Phosphors und sein Verhältnis zur Biomasse der Blaualge Oscillatoria limosa im Pelagial des Piburgersees. Diplomarbeit Universität Insbruck.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • René Gächter
    • 1
  • Joseph S. Meyer
    • 2
  1. 1.Institute of Aquatic Sciences (EAWAG)Swiss Federal Institute of Technology (ETH)KastanienbaumSwitzerland
  2. 2.Department of FisheriesHumboldt State UniversityArcataUSA

Personalised recommendations