Advertisement

Annals of the Institute of Statistical Mathematics

, Volume 41, Issue 3, pp 477–484 | Cite as

Closer estimators of a common mean in the sense of Pitman

  • Tatsuya Kubokawa
Estimation

Abstract

Consider the problem of estimating the common mean of two normal populations with different unknown variances. Suppose a random sample of sizem is drawn from the first population and a random sample of sizen is drawn from the second population. The paper gives a family of estimators closer than the sample mean of the first population in the sense of Pitman (1937,Proc. Cambridge Phil. Soc.,33, 212–222). In particular, the Graybill-Deal estimator (1959,Biometrics,15, 543–550) is shown to be closer than each of the sample means ifm≥5 andn≥5.

Key words and phrases

Pitman closeness common mean Graybill-Deal estimator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharya, C. G. (1980). Estimation of a common mean and recovery of interblock information,Ann. Statist.,8, 205–211.Google Scholar
  2. Brown, L. D. and Cohen, A. (1974). Point and confidence estimation of a common mean and recovery of interblock information.Ann. Statist.,2, 963–976.Google Scholar
  3. Graybill, F. A. and Deal, R. B. (1959). Combining unbiased estimators,Biometrics,15, 543–550.Google Scholar
  4. Khatri, C. G. and Shah, K. R. (1974). Estimation of location parameters from two linear models under normality.Comm. Statist. A—Theory Methods,3, 647–663.Google Scholar
  5. Kubokawa, T. (1987a). Estimation of a common mean of two normal distributions,Tsukuba J. Math.,11, 157–175.Google Scholar
  6. Kubokawa, T. (1987b). Admissible minimax estimation of a common mean of two normal populations,Ann. Statist.,15, 1245–1256.Google Scholar
  7. Peddada, S. D. and Khattree, R. (1986). On Pitman nearness and variance of estimators,Comm. Statist. A—Theory Methods,15, 3005–3017.Google Scholar
  8. Pitman, E. J. G. (1937). The closest estimates of statistical parameters,Proc. Cambridge Phil. Soc.,33, 212–222.Google Scholar
  9. Rao, C. R., Keating, J. P. and Mason, R. L. (1986). The Pitman nearness criterion and its determination,Comm. Statist. A—Theory Methods,15, 3173–3191.Google Scholar
  10. Sen, P. K. (1986). Are BAN estimators the Pitman-closest ones too?,Sankhya Ser. A,48, 51–58.Google Scholar
  11. Sen, P. K., Kubokawa, T. and Saleh, A. K. Md. E. (1989). The Stein paradox in the sense of the Pitman measure of closeness, to appear inAnn. Statist.,17, September.Google Scholar
  12. Sugiura, N. (1984). Asymptotically closer estimators for the normal covariance matrix,J. Japan Statist. Soc.,14, 145–155.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 1989

Authors and Affiliations

  • Tatsuya Kubokawa
    • 1
  1. 1.Institute of MathematicsUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations