Celestial Mechanics and Dynamical Astronomy

, Volume 53, Issue 2, pp 129–143 | Cite as

On the unmodeled perturbations in the motion of uranus

  • Adrian Brunini


In this paper we apply a numerical method to determine unmodeled perturbations in an attempt to explain the observed discrepancies in the motion of Uranus. We find that the estimated perturbation shows some significant periods that could be attributed to insufficient knowledge of the perturbations from some of the known planets. On the assumption that the gravitational attraction of an unknown planet is the origin of the deviations, the best planar solution of the inverse problem is a planet of 0.6 Earth masses, with true longitude of 133° (1990.5), semi major axis a = 44 AU and eccentricity e = 0.007.

Key words

Uranus planetary perturbations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, F.S.: 1959, Analysis of Straight Line Data, Wiley, New York.Google Scholar
  2. Bretagnon, P.: 1982, ‘frTheorie du mouvement de Fensemble des planètes. Solutions VSOP 82’, Astron. Astrophys. 114, 278–282.Google Scholar
  3. Brookes, C.J.: 1970, “On the prediction of Neptune’, Celestial Mechanics 3, 66–80.Google Scholar
  4. Craig, I.J. and Brown, J.: 1986, Inverse Problems in Astronomy, Adam Hilger Ltd, Bristol and Boston.Google Scholar
  5. Croswell, K.: 1988, ‘The pull of planet X’, Astronomy 16 (8), 30–39.Google Scholar
  6. Ferraz-Mello, S.: 1980, ‘Estimation of periods from unequally spaced data’, Astron. J. 86, 619–624.Google Scholar
  7. Gomes, R.S. and Ferraz-Mello S.: 1987, ‘A comparison of Bretagnon's VSOP82 theory observations of Neptune’, Astron. Astrophys. 185, 327–331.Google Scholar
  8. Gomes, R.S. and Ferraz-Mello S.: 1988a, ‘A comparison of Bretagnon's VSOP82 theory with observations of Uranus’, Astron. Astrophys. 203, 170–174.Google Scholar
  9. Gomes, R.S. and Ferraz-Mello S.: 1988b, ‘Would a Planet X explain the discrepancies in the motions of Uranus and Neptune’, An. Acad. bras. Ci. 60, 399–403.Google Scholar
  10. Gomes, R.S.: 1989, ‘On the problem of the search for Planet X based on its perturbation on the outer planets’, Icarus 80, 334–343.Google Scholar
  11. Guliev, A.S.: 1986, ‘On a hypothetical planet in the solar system’, Astron. Tsirk. 1430, 6–8.Google Scholar
  12. Harrington, R.S.: 1988, ‘The location of Planet X’, Astron. J. 96, 1476–1478.Google Scholar
  13. Isaakson, E. and Keller, H.B.: 1966, Analysis of Numerical Methods, John Wiley & Sons, Inc.Google Scholar
  14. Lowell, P.: 1915, ‘Memoir on a Trans-Neptunian Planet’, Memoirs of the Lowell Observatory 1(1).Google Scholar
  15. Matese, J.J. and Withmire, D.P.: 1986, ‘Planet X and the origins of the shower and steady state flux of short period comets’, Icarus 65, 37–50.Google Scholar
  16. Powell, C.: 1988, ‘A mathematical search of planet X’, Bull. Am. Asir. Soc. 20, (3).Google Scholar
  17. Raup, D.M. and Sepkosky, J.J.: 1984, ‘Periodicity of extinctions in the geologic past’, Proc. Natl. Acad. Sci. USA 81, 801–805.Google Scholar
  18. Rawlins, D. and Hammerton, M.: 1973, ‘Mass and position limits for an hypothetical tenth planet of the Solar System’, Mon. Not. Roy. Asir. Soc. 162, 261–270.Google Scholar
  19. Rodriguez, R. and Zadunaisky, P.E.: 1986, ‘A stable method to estimate perturbations in differential equations’, Comp. & Math. with Appl. 12B, 1275–1286.Google Scholar
  20. Rodriguez, R.: 1988, ‘Estimation numerica de perturbaciones en ecuaciones diferenciales ordinarias’, PhD Thesis, University of La Plata. (Argentine).Google Scholar
  21. Seidelmann, P.K. and Harrington, R.S.: 1988, “Planet X — The current status’, Celest. Mech. 43, 55–68.Google Scholar
  22. Seidelmann, P.K. and Williams, C.A.: 1988, ‘Discussion of current status of planet X’, Celest. Mech. 43, 409–412.Google Scholar
  23. Tapley, B.D. and Shutz, B.E.: 1974, ‘Estimation of unmodeled forces on a Lunar satellite’, Celest. Mech. 12, 409–1124.Google Scholar
  24. Tapley, B.D. and Ingram, D.S.: 1971, ‘Orbit determination in the presence of unmodeled accelerations’, IEEE Trans. Auto. Cont. AC-18.Google Scholar
  25. Tisserand, F.: 1888, Traité de Mécanique Celeste, Vol. 1, Ch. XXIII; Goutier Villars, Paris.Google Scholar
  26. Zadunaisky, P.E.: 1983, ‘On the estimation of small perturbations in ODE’, in Numerical Treatment of Inverse Problems in Differential and Integral Equations, Ed. P. Deuflhard. Springer-Verlag, Berlin, Heidelberg, New York, pp. 62–72.Google Scholar
  27. Zadunaisky, P.E. and Sanchez Peña, R.S.: 1988, ‘On the estimation of small perturbations in an inertial sensor’, Journal of Guidance Control and Dynamics 11, 623–630.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Adrian Brunini
    • 1
  1. 1.Facultad de Ciencias Astronomicas y GeofisicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations