Celestial Mechanics and Dynamical Astronomy

, Volume 66, Issue 3, pp 293–308 | Cite as

Numerical integration for the real time production of fundamental ephemerides over a wide time span

  • Aldo Vitagliano


A simplified model of the solar system has been developed along with an integration method, enabling to compute planetary and lunar ephemerides to an accuracy better than 1 and 2 milliarcsecs, respectively. On current personal computers, the integration procedure (SOLEX) is fast enough that by using a relatively small (∼ 20 Kbytes/Cy) database of starting conditions, any epoch in the time interval (up to ±100 Cy) covered by the database can be reached by the integrator in a few seconds. This makes the algorithm convenient for the direct computation of high precision ephemerides over a time span of several millennia.

Key words

Ephemerides extrapolation methods numerical integration orbit computation solar system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batrakov, Y V. and Shor, V A.: 1995, sCatalogue of Orbital Elements and Photometric Parameters of 6160 Minor Planets, Inst. Theor Astron., St. Petersbourg, Russia.Google Scholar
  2. Bretagnon, P and Francou, G.: 1988, Planetary Theories in Rectangular and Spherical Variables. VSOP87 Solution, Astron. Astrophys. 202, 309–315.Google Scholar
  3. Chapront-Touze, M. and Chapront, J.: 1983, The Lunar Ephemeris ELP 2000, Astron. Astrophys. 124, 50–62.Google Scholar
  4. Chapront-Touze, M. and Chapront, J.: 1988, ELP 2000–85: a Semi-analytical Lunar Ephemeris Adequate for Historical Times, Astron. Astrophys. 190, 342–352.Google Scholar
  5. Deuflhard, P.: 1985, Recent Progress in Extrapolation Methods for Ordinary Differential Equations, SIAM Review 27, 505–535.Google Scholar
  6. Fukushima, T.: 1989, Tests of the Extrapolation Method for the Numerical Integration of the Keplerian Motion, Cel. Mech. 45, 73–76.Google Scholar
  7. Gragg, W.: 1965, On Extrapolation Algorithms for Ordinary Initial Value Problems, SIAM J. Numer Anal. 2, 384–403.Google Scholar
  8. Hohenkerk, C. Y., Yallop, B. D., Smith, C. A. and Sinclair, A. T.: 1992, Celestial Reference Systems, in Explanatory Supplement to the Astronomical Almanac, University Science Books, Mill Valley, CA, pp. 111–114.Google Scholar
  9. Kammeyer, P.: 1989, Compressed Planetary and Lunar Ephemerides, Cel. Mech. 45, 311–316.Google Scholar
  10. Laskar, J.:1986, Secular Terms of Classical Planetary Theories Using the Results of General Theories, Astron. Astrophys. 157, 59–70.Google Scholar
  11. Meeus, J.: 1991, Astronomical Algorithms, Willmann-Bell, Richmond, Virginia.Google Scholar
  12. Montenbruck, G.: 1992, Numerical Integration Methods for Orbital Motion, Cel. Mech. 53, 59–69.Google Scholar
  13. Moshier, S.: 1992, Comparison of a 7000-year Lunar Ephemeris with Analytical Theory, Astron. Astrophys. 262, 613–616.Google Scholar
  14. Newhall, X. X., Standish, E. M. and Williams, J. G.: 1983, DE102: a Numerically Integrated Ephemeris of the Moon and Planets Spanning Forty-Four Centuries, Astron. Astrophys. 125, 150–167.Google Scholar
  15. Newhall, X. X.: 1989, Numerical Representation of Planetary Ephemerides, Cel. Mech. 45, 305–310.Google Scholar
  16. Nobili, A. M. and Roxburgh, I. W.:1986, Simulation of General Relativistic Corrections in Long Term Numerical Integration of Planetary Orbits, in Relativity in Celestial Mechanics and Astrometry, Reidel Pu. Co., Dordrecht, Holland, pp. 105–111.Google Scholar
  17. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T.: 1992, in Numerical Recipes (Fortran), Cambridge Univ. Press, Cambridge, MA, pp. 726–727.Google Scholar
  18. Quinn, T. R., Tremaine, S. and Duncan, M.: 1991, A Three Million Year Integration of the Earth's Orbit, Astron. J. 101, 2287–2305.Google Scholar
  19. Standish, E. M.: 1982, The JPL Planetary Ephemerides, Cel. Mech. J. 26, 181–186.Google Scholar
  20. Standish, E. M., Newhall, X. X., Williams, J. G. and Folkner, W. M.: 1995, JPL Planetary and Lunar Ephemerides, DE403/LE403, JPL IOM 314.10–127.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Aldo Vitagliano
    • 1
  1. 1.Dipartimento di ChimicaUniversità di Napoli ‘Federico 11’NapoliItaly

Personalised recommendations