Advertisement

Hydrobiologia

, Volume 260, Issue 1, pp 131–137 | Cite as

Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions

  • Christophe Destombe
  • José Godin
  • Marc Nocher
  • Sophie Richerd
  • Myriam Valero
2. Taxonomy and general biology

Abstract

This study tests the responses of juvenile gametophytes and tetrasporophytes (holdfast stage) of the isomorphic alga Gracilaria verrucosa under different environmental conditions.

Estimations of survival and growth of holdfasts of haploid and diploid juvenile individuals were performed in natural sea-water and artificial culture medium, and under stringent conditions using lead as a toxin and ultra violet radiation as a mutagen. Results indicate that (i) holdfasts of haploid juveniles grow better than diploids in non-optimal medium conditions; (ii) holdfasts of diploid juveniles have a better tolerance to lead than haploids; and (iii) slight advantage of holdfasts of diploid juveniles grow better than haploids under U.V. radiation.

Key words

Rhodophyta Gracilaria verrucosa evolution of ploidy lead toxicity ultra-violet mutagen survival rates growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. & P. E. Hansche, 1974. Population studies in microorganisms I. Evolution of diploidy in Saccharomyces cerevisiae. Genetics 76: 327–338.Google Scholar
  2. Bernstein, H., H. C. Byerly, F. A. Hopf & R. E. Michod, 1985. Genetic Damage, Mutation, and the Evolution of Sex. Science 229: 1277–1281.Google Scholar
  3. Bodard, M., 1973. Réflexions sur les cultures d'Algues rouges à partir de boutures. Bull. Soc. Phycol. Fr. 18: 20–30.Google Scholar
  4. Cavalier-Smith, T., 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34: 247–278.Google Scholar
  5. Crow, J. F. & M. Kimura, 1965. Evolution in sexual and asexual populations. Am. Nat. 909: 439–450.Google Scholar
  6. Destombe, C., J. Godin, Cl. Lefebvre, O. Dehorter & Ph. Vernet, 1992. Differences in dispersal Abilities of Haploid and Diploid spores of Gracilaria verrucosa (Gracilariales, Rhodophyta). Bot. mar. 35: 93–98.Google Scholar
  7. Destombe, C., M. Valero, Ph. Vernet & D. Couvet, 1989. What controls haploid-diploid ratio in the red alga, Gracilaria verrucosa. J. evol. Biol. 2: 317–338.Google Scholar
  8. Galun, E. & D. Raveh, 1975. In vitro culture of tobacco protoplasts: survival of haploid and diploid protoplasts exposed to X-ray radiation at different times after isolation. Radiation Botany 15: 79–82.Google Scholar
  9. Goff, L. J. & A. W. Coleman, 1987. The solution to the cytological paradox of isomorphy. J. Cell. Biol. 104: 739–748.Google Scholar
  10. Hampp, R. & K. Lendzian, 1974. Effect of lead ions on chlorophyll synthesis Die Naturwissenschaften, 61: 218–219.Google Scholar
  11. Hannach, G. & B. Santelices, 1985. Ecological differences between the isomorphic reproductive phases of two species of Iridea (Rhodophyta, Gigartinales). Mar. Ecol. Prog. Ser. 22: 291–303.Google Scholar
  12. Haritonidis, S., H. J. Jaeger & H. O. Schwantes, 1983. Accumulation of cadmium, zinc, copper and lead by marine Macrophyceae under culture conditions, Angew Botanik 57: 311–330.Google Scholar
  13. Henriques, J. A. P., R. Chanet, D. Averbeck & E. Moustachi, 1977. Lethality and ‘petite’ mutation induced by the photoaddition of 8-methoxypsoralen in yeast. Molec. Gen. Genet. 158: 63–72.Google Scholar
  14. Krumbiegel, G., 1979. Response of haploid and diploid protoplasts from Datura innoxia Mill. and Petunia hybrida L. to treatment with X-rays and a chemical mutagen. Envir. exp. Bot. 19: 99–103.Google Scholar
  15. Lewis, W. M., 1985. Nutrient scarcity as an evolutionary cause of haploidy. Am. Nat. 125: 692–701.Google Scholar
  16. Littler, M. M., D. S. Littler & P. R. Taylor, 1987. Functional similarity among isomorphic life-history phases of Polycavernosa debilis (Rhodophyta, Gracilariaciae). J. Phycol. 23: 501–505.Google Scholar
  17. Maynard Smith, J., 1978. The evolution of sex. Cambridge University Press, Cambridge, 222 ppGoogle Scholar
  18. Mezger-Feed, L, 1974. An Analysis of survival in haploid and diploid cell cultures after exposure to ICR acridine halfmustard compounds mutagenic for Bacteria. Proc. nat Acad. Sci. USA. 71: 4416–4420.Google Scholar
  19. Perrot, V., S. Richerd & M. Valero, 1991. Transition from haploidy to diploidy. Nature 351: 315–317.Google Scholar
  20. Polne, M. & A. Gibor, 1982. The effect of high intensity U.V. radiation on benthic marine algae in ‘The role of solar ultraviolet radiation in marine ecosystems’, ed. Calkins J., Plenum Publishing Corporation 573–579.Google Scholar
  21. Raper, J. R. & A. S. Flexer, 1970. The road to diploidy with emphasis on a detour. Symp. Soc. Gen. Microbiol. 20: 401–432.Google Scholar
  22. SAS/STAT, 1988. User's Guide, Release 6.03 Edition. Cary, NC: SAS Institute inc., 1028 pp.Google Scholar
  23. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman and Co. New York, 859 pp.Google Scholar
  24. Stewart, J. G., 1977. Effects of lead on the growth of four species of red algae. Phycologia 16: 31–36.Google Scholar
  25. Toby, A. L. & C. L. Kemp, 1980. Nitrosguanidine and ultraviolet light mutagenesis in Eudorina elegans (Chlorophyceae). J. Phycol. 16: 173–177.Google Scholar
  26. Valero, M., S. Richerd, V. Perrot & C. Destombe, 1992. Evolution of alternation of haploid and diploid phases in life cycles. Trends in Ecology and Evolution 7: 25–29.Google Scholar
  27. Zhang, X. & J. P. van der Meer, 1987. A study of heterosis in diploid gametophytes of the marine red algae Gracilaria tikvahiae. Bot. mar. 30: 309–314.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Christophe Destombe
    • 1
  • José Godin
    • 1
  • Marc Nocher
    • 1
  • Sophie Richerd
    • 1
  • Myriam Valero
    • 1
  1. 1.Laboratoire de Génétique et Evolution des Populations Végétales, URA CNRS 1185, GDR 'Algues' 1002, Bât SN2Université des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance

Personalised recommendations