On the number of central configurations in the N-body problem

  • Jaume Llibre
Article

Abstract

Central configurations are critical points of the potential function of the n-body problem restricted to the topological sphere where the moment of inertia is equal to constant. For a given set of positive masses m1,..., mn we denote by N(m1, ..., mn, k) the number of central configurations' of the n-body problem in ℝk modulus dilatations and rotations. If mn1,..., mn, k) is finite, then we give a bound of N(m1,..., mn, k) which only depends of n and k.

Key words

N-body problem central configuration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buck, G.: 1991, ‘On clustering in central configurations’, Proc. Amer. Math. Soc., in print.Google Scholar
  2. Buck, G.: 1989, ‘The collinear central configuration of n equal masses’ preprint.Google Scholar
  3. Cedó, F. and Llibre, J.: 1989, ‘Symmetric central configurations of the spatial nbody problem’ J. of Geometry and Physics, 6, 367–394.Google Scholar
  4. Dziobek, 0.: 1900, ‘Uber einen merkwurdigen fall des vielkorperproblems’, Astron. Nach., 152, 32–46.Google Scholar
  5. Elmabsout, B.: 1988, ‘Sur l'existence de certaines configurations d'equilibre relatif dans le problem des N corps’, Celest. Mech., 41, 131–151.Google Scholar
  6. Hagihara, Y.: 1970, Celestial Mechanics, Vol. 1, MIT press, Cambridge.Google Scholar
  7. Mac-Millan, W.D. and Bartky, W.: 1932, ‘Permanent configurations in the problem of four bodies’, Trans. Amer. Math. Soc., 34, 838–875.Google Scholar
  8. Meyer, K.R.: 1987, ‘Bifurcation of a central configuration’ Celest. Mech., 40, 273–282.Google Scholar
  9. Meyer, K.R. and Schmidt, D.: 1988a, ‘Bifurcation of relative equilibria in the four and five body problem’, Ergod. Th. and Dyn. Sys. 8*, 215–225.Google Scholar
  10. Meyer, K.R. and Schmidt, D.: 1988b, ‘Bifurcations of relative equilibria in the n-body and Kirchhoff problems’, Siam J. Math. Anal., 19, 1295–1313.Google Scholar
  11. Moeckel, R.: 1985, lsRelative equilibria of the four-body problem’, Erg. Th. and Dyn. Sys., 5, 417–435.Google Scholar
  12. Moeckel, R.: 1989, ‘On central configurations’, preprint.Google Scholar
  13. Moulton, F.R.: 1910, ‘The straight line solutions of the problem of N bodies’, Ann. of Math., 12, 1–17.Google Scholar
  14. Pacella, F.: 1987, ‘Central configurations of the n-body problem via equivariant Morse theory’, Archive for Rat. Mech. and Anal., 97, 59–74.Google Scholar
  15. Palmore, J.: 1973, ‘Classifying relative equilibria I’, Bull. Amer. Math. Soc., 79, 904–908.Google Scholar
  16. Palmore, J.: 1975a, ‘Classifying relative equilibria II’, Bull. Amer. Math. Soc., 81, 489–491.Google Scholar
  17. Palmore, J.: 1975b, ‘Classifying relative equilibria III’, Letters in Math. Phys., 1, 71–73.Google Scholar
  18. Perko, L.M. and Walter, E.L.: 1985, ‘Regular polygon solutions of the n-body problem’, Proc. Amer. Mat. Soc., 94, 301–309.Google Scholar
  19. Saari, D.: 1980, ‘On the role and properties of central configurations’, Celest. Mech., 21, 9–20.Google Scholar
  20. Schmidt, D.S.: 1988, ‘Central configurations in ℝ2 and ℝ3, Contemporary Mathematics, 81, 59–76.Google Scholar
  21. Shub, M.: 1970, ‘Appendix to Smale's paper : Diagonals and relative equilibria’, in Manifolds-Amsterdam 1970, Springer Lecture Notes in Math., 197, 199–201.Google Scholar
  22. Simo, C.: 1977, ‘Relative equilibrium solutions in the four body problem’, Celest. Mech., 18, 165–184.Google Scholar
  23. Smale, S.: 1970a, ‘Topology and mechanics II: The planar n-body problem’, Inventiones math., 11, 45–64.Google Scholar
  24. Smale, S.: 1970b, ‘Problems on the nature of relative equilibria in Celestial Mechanics’, in Manifolds-Amsterdam 1970, Springer Lecture Notes in Math., 197, 194–198. Wintner, A.: 1941, The Analytical Foundations of Celestial Mechanics, Princeton Univ. Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Jaume Llibre
    • 1
  1. 1.Departament de MatemàatiquesUnivesitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations