Advertisement

Hydrobiologia

, Volume 186, Issue 1, pp 81–102 | Cite as

Salinity and temperature influence in rotifer life history characteristics

  • María R. Miracle
  • Manuel Serra
Autoecology

Abstract

A review of temperature and salinity effects on rotifer population dynamics is presented together with original data of these effects for three clones of Brachionus plicatilis. There is a clear relationship between temperature and the intrinsic rate of increase, r: an increase of temperature — within the natural environmental range — produces an exponential increase of r, and the slope of the response depends on the genotype. The effect of salinity is also genetically dependent; the highest r for each clone is observed at the salinity close to that of its environmental origin. The response of r to temperature is mainly a consequence of the response of the individual rates of development and reproductive timing. The effect of temperature on fecundity (number of descendents per individual life time) is negligible when temperature values are within the normal habitat ranges. On the other hand, salinity seems to affect primarily fecundity. The interaction salinity-temperature may be important in clones or species living in fluctuating environments with positive response to the more frequent combinations found in the corresponding habitats.

Key words

rotifers rate of population increase life span temperature salinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderdice, D. F., 1972. Responses of marine poildlotherms to environmental factors acting in concert. In: O. Kinne (ed.), Marine ecology, vol. 1. Wiley, London: 1659–1722.Google Scholar
  2. Allan, J. D., 1976. Life history patterns in zooplankton. Am. Nat. 110: 165–180.Google Scholar
  3. Allan, J. D. & C. E. Goulden, 1980. Some aspects of reproductive variation among freshwater zooplankton. In: W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover: 388–410.Google Scholar
  4. Amrén, H., 1964. Ecological studies of zooplankton populations in some ponds on Spitsbergen. Zool. Bidr. Upps. 36: 162–191.Google Scholar
  5. Armengol, J., 1978. Zooplankton crustaceans in Spanish reservoirs. Verh. int. Ver. Limnol. 20: 1652–1656.Google Scholar
  6. Aronovich, T. M. & L. V. Spektorova, 1974. Survival and fecundity of Brachionus calyciflorus in water of different salinities. Hydrobiol. J. 10: 71–74.Google Scholar
  7. Bayly, I. A. E., 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine waters. Annu. Rev. Ecol. Syst. 3: 233–268.Google Scholar
  8. Braun, G., G. Kummel & J. A. Mangos, 1966. Studies on the ultrastructure and function of a primitive excretory organ, the protonephridium of the rotifer Asplanchna priodonta. Pflügers Arch. 189: 141–154.Google Scholar
  9. Clément, P., 1968. Ultrastructures d'un rotifère, Notommata copeus. I. La cellule-flamme. Hypothèses physiologiques. Z. Zellforsch. 89: 478–498.Google Scholar
  10. Dorgelo, J., 1976. Salt tolerance in crustacea and the effect of temperature upon it. Biol. Rev. 51: 255–290.Google Scholar
  11. Duncan, A., 1983. The influence of temperature upon the duration of embryonic development of tropical Brachionus species (Rotifera). In: F. Schiemer (ed.), Limnology of Parakrama Samudra Sri-Lanka. Dr. W. Junk, The Hague.Google Scholar
  12. Edmondson, W. T., 1965. Reproductive rate of planktonic rotifers as related to food and temperature in nature. Ecol. Monogr. 35: 61–111.Google Scholar
  13. Epp, R. W. & P. W. Winston, 1977. Osmotic regulation in brackish-water rotifer Brachionus plicatilis (Müller). J. Exp. Biol. 68: 151–156.Google Scholar
  14. Epp, R. W. & P. W. Winston, 1978. The effect of salinity and pH on the activity and oxygen consumption of Brachionus plicatilis (Rotatoria). Comp. Biochem. Physiol. 59A: 9–12.Google Scholar
  15. Epp, R. W. & W. M. Lewis, 1980. Metabolic uniformity over the environmental temperature range in Brachionus plicatilis (Rotifera). Hydrobiologia 73: 145–147.Google Scholar
  16. Epp, R. W. & W. M. Lewis, 1984. Cost and speed of locomotion for rotifers. Oecologia (Berl.) 61: 289–292.Google Scholar
  17. Fava, G., I. Lazzaretto & E. Martini, 1983. Effetti della riduzione di salinità in due diverse popolazioni lagunari di Tisbe clodiensis (Copepoda, Harpacticoida). Atti Ist. Veneto Sci. 141: 105–120.Google Scholar
  18. Galkovskaya, G. A., 1983. On temperature acclimation in a experimental population of Brachionus calyciflorus. Hydrobiologia 104: 225–227.Google Scholar
  19. Galkovskaya, G. A., 1987. Planktonic rotifers and temperature. Hydrobiologia 147: 307–317.Google Scholar
  20. Galkovskaya,G. A.,J. Ejsmont-Karabin & V. N. Evdokimov, 1987. Relative protein metabolism in rotifer Brachionus calyciorus Pallas, in relation to temperature. Int. Rev. Gesamten Hydrobiol. 72: 59–69.Google Scholar
  21. Gilbert, J. J., 1976. Polymorphism in the rotifer Asplanchna sieboldi: biomass, growth, and reproductive rates of the saccate and campanulate morphotypes. Ecology 57: 542–551.Google Scholar
  22. Ito, T., 1960. On the culture of mixohaline rotifer Brachionus plicatilis O. F. Müller in sea water. Rep. Fac. Fish., Prefec. Univ. Mie. 3: 708–740.Google Scholar
  23. Halbach, U., 1973. Life table data and population dynamics of the rotifer Brachionus calyciflorus Pallas as influenced by periodically oscillating temperature. In: W. Wieser (ed.), Effects of temperature in ectothermic organism. Springer-Verlag. Berlin: 217–228.Google Scholar
  24. Herzig, A., 1983. Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia 104: 237–246.Google Scholar
  25. Hirayama, K. & S. Ogawa, 1972. Fundamental studies on physiology of rotifer for its mass culture. I. Filter Feeding of Rotifer. Bull. Jpn. Soc. Sci. Fish. 38: 1207–1214.Google Scholar
  26. Hirayama, K. & T. Kusano, 1972. Fundamental studies on physiology of rotifer for its mass culture. II. Influence of water temperature on population growth of rotifer. Bull. Jap. Soc. Sci. Fish. 38: 1357–1363.Google Scholar
  27. Hino, A. & R. Hirano, 1984. Relationship between water temperature and bisexual reproduction rate in the rotifer Brachionus plicatilis. Bull. Jap. Soc. Sci. Fish. 50: 1481–1485.Google Scholar
  28. Hino, A. & R. Hirano, 1988. Relationship between water chlorinity and bisexual reproduction rate in the rotifer Brachionus plicatilis. Nippon Suasan Gakkaishi 54: 1329–1332.Google Scholar
  29. Hummon, W. D. & D. P. Bevelhymer, 1980. Life table demography of the rotifer Lecane tenuiseta under culture conditions and various age distributions. Hydrobiologia 70: 25–28.Google Scholar
  30. Kabay, M. E. & J. J. Gilbert, 1978. Polymorphism in the rotifer Asplanchna sieboldi: Insensitivity of the body-waloutgrowth response to temperature, food density, pH and osmolarity differences. Arch. Hydrobiol. 83: 377–390.Google Scholar
  31. Kinne, O., 1970. Temperature: Animals-Invertebrates. In: O. Kinne (ed.), Marine ecology, vol. 1. Wiley, London: 407–514.Google Scholar
  32. King, C. E., 1972. Adaptation of rotifers to seasonal variation. Ecology 53: 408–418.Google Scholar
  33. King, C. E. & M. R. Miracle, 1980. A perspective on aging in rotifers; Hydrobiologia 73, 13–19.Google Scholar
  34. Lansing, A. I., 1942. Some effects of hydrogen ion concentration, total salt concentration, calcium and citrate on longevity and fecundity of rotifer. J. Exp. Zool. 91: 195–211.Google Scholar
  35. Lebedeva, L. I. & T. N. Gerasimova, 1985. Peculiarities of Philodina roseola (Ehrbg.) (Rotatoria Bdelloida). Growth and reproduction under various temperature conditions. Int. Rev. Gesamten Hydrobiol. 70: 509–525.Google Scholar
  36. Lebedeva, L. I. & T. N. Gerasimova, 1987. Survival and reproduction potential of Philodina roseola (Ehrenberg) (Rotatoria Bdelloida) under various temperature conditions. Int. Rev. Gesamten Hydrobiol. 72: 695–707.Google Scholar
  37. Lubzens, E., 1981. Rotifer resting eggs and their application to marine aquaculture. Eur. Maricult. Soc. Spec. Publ. 6: 163–180.Google Scholar
  38. Lubzens, E., R. Fishler & V. Berdugo-White, 1980. Induction of sexual reproduction and resting egg production in Brachionus plicatilis reared in sea water, Hydrobiologia 73: 55–58.Google Scholar
  39. Lubzens, E., G. Minkoff & S. Marom, 1985. Salinity dependence of sexual and asexual reproduction in the rotifer Brachionus plicatilis. Mar. Biol. (Berl.) 85: 123–126.Google Scholar
  40. Miracle, M. R., 1974. Niche structure in freshwater zooplancton: a principal components approach. Ecology 55: 1306–1317.Google Scholar
  41. Miracle, M. R., M. Serra, E. Vicente & C. Blanco, 1987. Distribution of Brachionus species in Spanish mediterranean wetlands. Hydrobiologia 147: 75–81.Google Scholar
  42. Nagata, W. D., 1985. Long-term acclimation of a parthenogenetic Strain of Brachionus plicatilis to subnormal temperatures. I. Influence on size, growth, and reproduction. Bull. mar. Sci. 37: 716–725.Google Scholar
  43. Nogrady, T., 1988. The littoral rotifers plankton of the Bay Quinte (Lake Ontario) and its horizontal distribution as indicators of trophy. I. A full season study. Arch. Hydrobiol. Suppl. 79: 145–156.Google Scholar
  44. Pascual, E. & M. Yúfera, 1983. Crecimiento en cultivo de una cepa de Brachionus plicatilis O. F. Müller en funcón de la temperatura y la salinidad. Invest. Pesq. 47: 151–159.Google Scholar
  45. Pontin, R. M., 1964. A comparative account of the protonephridia of Asplanchna (Rotifera) with special reference to the flame bulbs. Proc. zool. Soc. Lond. 142: 511–525.Google Scholar
  46. Pontin, R. M., 1966. The osmoregulatory function on the vibratile flames and the contractile vesicles of Asplanchna (Rotifera). Comp. Biochem. Physiol. 17: 1111–1126.Google Scholar
  47. Potts, W. T. & G. Parry, 1964. Osmotic and ionic regulation in animals. Pergamon Press, Oxford.Google Scholar
  48. Pourriot, R., 1973a. Rapports entre la température, la taille des adultes, la longueur des œufs en le taux de développement embryonnaire chez Brachionus calyciflorus Pallas (Rotifère). Ann. Hydrobiol. 4: 103–115.Google Scholar
  49. Pourriot, R., 1973b. Influence de la teneur en protéines, de la temperature et du jeûne sur la respiration de Rotifès héléoplanctonctoniques. Verb. int. Ver. Limnol. 18: 1429–1433.Google Scholar
  50. Pourriot, R. & M. Deluzarches, 1971. Recherches sur la biologie des rotifères. II. Influence de la température sur la durée du développement embryonaire et postembryonaire. Ann. Limnol. 7: 25–52.Google Scholar
  51. Pourriot, R. & C. Rougier, 1975. Dynamique d'une population expérimentale de Brachionus dimidiatus (Bryce) (Rotifère) en fonction de la nourriture et de la température. Ann. Limnol. 11: 125–143.Google Scholar
  52. Ricci, C., 1976. Note preliminare sull'allevamento di un rotifero Bdelloidea. Atti. Soc. Ital. Sci. Nat. Museo Civ. Stor. Nat. Milano 117: 144–148.Google Scholar
  53. Ricci, C., 1978. Some aspects of the biology of Philodina roseola (Rotifera). Me. Ist. ital. Idrobiol. 36: 109–116.Google Scholar
  54. Ruttner-Kolisko, A., 1971. Rotatorien als Indikatoren für den Chemismus von Binnensalzgewässern. Sitz-Ber. Österr. Akad. Wiss. Math. Nat. Kl. Abt. I. 179: 283–298.Google Scholar
  55. Ruttner-Kolisko, A., 1972. Der Einfluβ von Temperatur and Salzgehalt des Mediums auf Stoffwechsel- and Vemehrungsintensität von Brachionus plicatilis (Rotatoria). Dt. Zool. Ges. 65: 89–95.Google Scholar
  56. Ruttner-Kolisko, A., 1975. The influence of fluctuating temperature of plankton rotifers. A graphical model based on live data of Hexarthra fennica from Neusiedlersee, Austria. Symp. Biol. Hung. 15: 197–204.Google Scholar
  57. Ruttner-Kolisko, A., 1978. Influence of fluctuating temperature of plankton rotifers. II. Laboratory experiments. Verh. int. Ver. Limnol. 20: 2400–2405.Google Scholar
  58. Serra, M., 1987. Variacibn morfométrica, isoenzimática y demográfica en poblaciones de Brachionus plicatilis. Diferenciación genética y plasticidad fenotípica. Ph. D. Thesis, Universitat de Valencia, Valencia.Google Scholar
  59. Serra, M. & M. R. Miracle, 1983. Biometric analysis of Brachionus plicatifs ecotypes from Spanish lagoons. Hydrobiologia 104: 279–291.Google Scholar
  60. Serra, M. & M. R. Miracle, 1985. Enzyme polymorphism in Brachionus plicatilis populations from several Spanish lagoons. Verh. int. Ver. Limnol. 22: 2991–2996.Google Scholar
  61. Serra, M. & M. R. Miracle, 1987. Biometric variation in three strains of Brachionus plicatilis. Hydrobiologia 147: 83–89.Google Scholar
  62. Stemberger, R. S. & J. J. Gilbert, 1985. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159.Google Scholar
  63. Snell, T. W., 1986. Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar. Biol. 92: 157–162.Google Scholar
  64. Snell, T. W., M. J. Childress, E. M. Boyer & F. H. Hoff, 1987. Assessing the status of rotifer mass cultures. J. World Aquacult. Soc. 18: 270–277.Google Scholar
  65. Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: the cost of reproduction. Evolution 31: 882–890.Google Scholar
  66. Starkweather, P. L., 1987. Rotifera. In: Animal Energetics, Vol. 1. Academic Press, N.Y.Google Scholar
  67. Vinberg, G. G. & G. A. Galkovskaya, 1979. Relationship between the development rate of rotifers and temperature. V kn. Obschyie osnovyiznchieniya vodnykh ekosistiem. L, Nauka: 149–155.Google Scholar
  68. Walz, N., 1983. Individual culture and experimental population dynamics of Keratella cochlearis (Rotatoria). Hydrobiologia 107: 35–45.Google Scholar
  69. Walz, N., 1987. Comparative population dynamics of the rotifers Brachionus angularis and Keratella cochlearis. Hydrobiologia 147: 209–213.Google Scholar
  70. Yúfera, M., 1987. Effect of algal diet and temperature on the embryonic development time of the rotifer Brachionus plicatilis in culture. Hydrobiologia 147: 319–322.Google Scholar
  71. Yúfera, M. & E. Pascual, 1980. Estudio del Cndimiento de cultivos del rotífero Brachionus plicatilis O. F. Müller alimentados con levadura de panificación. Invest. Pesq. 44: 361–368.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • María R. Miracle
    • 1
  • Manuel Serra
    • 1
  1. 1.Dep. de Ecologia, Fac. de C. BiológicasUniv. de ValenciaBurjassot (Valencia)Spain

Personalised recommendations