Advertisement

Hydrobiologia

, Volume 81, Issue 1, pp 319–338 | Cite as

23. The biology of Antarctic saline lakes

  • S. W. Wright
  • H. R. Burton
Article

Keywords

Saline Lake Antarctic Saline Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akatova, N. A., 1964. The occurrence of Daphniopsis studeri Rühe (Cladocera) in the lake of the Vestfold Hills, East Antarctica. (Russian) Rezul'taty Biol. Issled. Sovet, Antarkt. Eksp. (1955–1958 gg) 2, Moskva, Akad, Nauk, SSSR, Zool. Inst. Issled. Fauny Morei, 2(10): 185–188. (English translation: Biological Results of the Soviet Antarctic Expedition (1955–1958) Studies of Marine Fauna: 2.) Israel Program for Scientific Translation, Jerusalem, 1968, pp. 190–193.Google Scholar
  2. Akiyama, M., 1975. Plankton and bottom deposits of Lake Funazoko-IKe in Skarvs Nes, Antarctica. Shimane Univ. Education Dept. Lett. 9: 29–42.Google Scholar
  3. Anita, N. J., 1976. Effects of temperature on the darkness survival of marine microplanktonic algae. Microbial Ecol. 3: 41–54.Google Scholar
  4. Aoki, K. & Konno, H., 1961. Frost resistance of the Rotifer in Antarctic Region. Bull. Mar. Biol. Station Asamuhi 10: 247–250.Google Scholar
  5. Armitage, K. B. & House, H. B., 1962. A limnological reconnaissance in the area of McMurdo sound, Antarctica. Limnol. Oceanogr. 7: 36–41.Google Scholar
  6. Baker, A. N., 1967. Algae from Lake Miers, a solar-heated Antarctic lake. N.Z. J. Bot. 5: 453–468.Google Scholar
  7. Barghoorn, E. S. & Nichols, R. L., 1961. Sulphate-reducing bacteria and pyritic sediments in Antarctica. Science, N.Y. 134: 190.Google Scholar
  8. Barker, R. J., 1977. A biological reconnaissance of the Bunger Hills (March 1977). ANARE Technical Memorandum No. 67.Google Scholar
  9. Baross, J. A. & Morita, R. Y., 1978. Microbial life at low temperatures, ecological aspects. In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.Google Scholar
  10. Bayly, I. A. E., 1978. The occurrence of Paralabodocera antarctica (I. C. Thompson) (Copepoda: Calanoida: Acartiidaea) in an Antarctic saline lake. Aust. J. Mar. Freshwat. Res. 29: 817–824.Google Scholar
  11. Becker, E. W., 1970. Studies on low-temperature photosynthesis of algae. Antarct. J. U.S. 5: 121–122.Google Scholar
  12. Ben-Amotz, A., 1975. Adaptation of the unicellular alga Dunaliella parva to a saline environment. J. Phycol. 11: 50–54.Google Scholar
  13. Ben Amotz, A. & Avron, M., 1972. Photosynthesis activities of the halophilic alga, Dunaliella parva. Pl. Physiol., Lancaster, 49: 240–243.Google Scholar
  14. Ben-Amotz, A. & Avron, M., 1973. The role of glycerol in the osmotic regulation of the halophilic alga, Dunaliella parva. Pl. Physiol., Lancaster 51: 875–878.Google Scholar
  15. Benoit, R. E. & Hall, C. L., 1962. The microbiology of some dry valley soils of Victoria Land, Antarctica. In: M. W. Holdgate (ed.) Antarctic Ecology. Vol. 2. Academic Press, New York.Google Scholar
  16. Benoit, R. E., Hatcher, R. & Green, W., 1971. Bacteriological profiles and some chemical characteristics of two permanently frozen Antarctic Lakes. In: J. Cairns, Jr. (ed.) The Structure and Function of Fresh-Water Microbial Communities. Virginia Polytechnic and State University, Blacksburg.Google Scholar
  17. Bienati, N. L., 1967. Estudio limnologico del Lago Irizar, Isla Decepcion, Shetland del Sur. Contributiones, Instituto antarctico Argentino, 111: 1–36.Google Scholar
  18. Bierle, D. A., 1969. The ecology of an Antarctic freshwater lake with emphasis on the ciliate protozoa. Ph.D. thesis, University of South Dakota, U.S.A.Google Scholar
  19. Borowitzka, L. J. & Brown, A. D., 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch. Mikrobiol. 96: 37–52.Google Scholar
  20. Borutsky, E. V. & Vinogradov, M. E., 1957. [A discovery of Cyclopoidae (Acanthocyclops mirnyi n.sp.) on the continent of Antarctica.] Zool. Zh. 36: 199–203. [In Russian].Google Scholar
  21. Bourrelly, P., 1968. Les Algues D'eau Douce, Initiation à la systématique. Vol. 2. Les algues jaunes et brunes, Chrysophycées, Pheophycées, Xanthophycées et Diatomées. Editions N. Boubee & Cie, Paris.Google Scholar
  22. Bourrelly, P., 1970. Les Algues D'eau Douce, Initiation à la Systématique. Vol. 3. Les Algues bleues et rouges, Les Eugleniens, Peridiniens et Cryptomonadines. Editions N. Boubée & Cie, Paris.Google Scholar
  23. Bourrelly, P., 1972. Les Algues D'eau Douce, Initiation à la Systématique. Vol. 1. Les Algues Verts. Editions N. Boubée & Cie, Paris.Google Scholar
  24. Brock, T. D., 1976. Halophilic blue-green algae. Arch Mikrobiol. 107: 109–111.Google Scholar
  25. Bunt, J. S., 1963. Diatoms of antarctic sea-ice as agents of primary production. Nature, Lond. 199: 1255–1257.Google Scholar
  26. Bunt, J. S., Owens, O. van H. & Hoch, G., 1966. Exploratory studies on the physiology and ecology of a psychrophilic marine diatom. J. Phycol. 2: 96–100.Google Scholar
  27. Bunt, J. S. & Lee, C. C., 1972. Data on the composition and dark survival of four sea-ice microalgae. Limnol. Oceanogr. 17: 458–461.Google Scholar
  28. Burton, H. R., 1980. Methane in a Saline Antarctic lake. In: P. A. Trudinger, M. R. Walter (eds.) Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Australian Academy of Science, Canberra.Google Scholar
  29. Cameron, R. E., 1972. Ecology of blue-green algae in Antarctic soils. In: T. V. Desikarachy (ed.) First International Symposium on Taxonomy and Biology of Blue-Green Algae. University of Madras: India, MadrasGoogle Scholar
  30. Cameron, R. E., Morelli, F. A. & Randall, L. P., 1972. Aerial, aquatic and soil microbiology of Don Juan Pond, Antarctica. Antarctic J. U.S. 7: 452–258.Google Scholar
  31. Campbell, P. J., 1978. Primary productivity of a hypersaline Antarctic lake. Aust. J. Mar. Freshwat. Res. 29: 717–724.Google Scholar
  32. Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.Google Scholar
  33. Corte, A., 1962. Algas de agua dulce en lagos semicongelados de Bahia Esperanza, Peninsula Antartica. Contributiones, Instituto antartico Argentino, 69.Google Scholar
  34. Douzou, P., 1977. Cryobiochemistry: An Introduction. Academic Press, New York.Google Scholar
  35. Drouet, F., 1973. A brief review of the freshwater algae of Antarctica. Publs natn. Acad. Sci. 839: 10–12.Google Scholar
  36. Durbin, E. G., 1974. Studies on the autecology of the marine diatom Thallassiosira nordenskiöldii Cleve. I. The influence of daylength, light intensity and temperature on growth. J. Phycol. 10: 220–225.Google Scholar
  37. El-Sayed, S. Z., 1970. Phytoplankton production of the South Pacific and Pacific Sector of the Antarctic. In: W. S. Wooster (ed.) Scientific Exploration of the South Pacific. National academy of Sciences, Washington, D.C.Google Scholar
  38. Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.Google Scholar
  39. Farrell, J. & Rose, A. H., 1967. Temperature effects on microorganisms. A. Rev. Microbiol. 21: 101–120.Google Scholar
  40. Fogg, G. E., 1977. Aquatic primary production in the Antarctic. Phil. Trans. R. Soc. Lond. Ser. B, 279: 27–38.Google Scholar
  41. Fogg, G. E. & Horne, A. J., 1970. The physiology of Antarctic freshwater algae. In: M. W. Holdgate (ed.) Antarctic Ecology. Vol. 2. Academic Press, New York.Google Scholar
  42. Fogg, G. E., Nalewajko, C. & Watt, W. D., 1965. Extracellular products of phytoplankton photosynthesis. Proc. R. Soc. Lond. Ser. B, 162: 517–534.Google Scholar
  43. Friedman, E. I., 1977. Microorganisms in antarctic desert rocks from dry valleys and Dufek Massif. Antarctic J. U.S. 12: 26–30.Google Scholar
  44. Friedman, E. I., 1978. Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarctic J. U.S. 13: 162–163.Google Scholar
  45. Friedman, E. I. & Ocampo, R., 1976. Endolithic algae in the dry valleys: primary producers in the antarctic desert ecosystem. Science, N.Y. 193: 1247–1249.Google Scholar
  46. Fukushima, H., 1964. Diatoms vegetation on ice-free area of Cape Royds, Antarctica. Antarctic Record, 22: 1–13.Google Scholar
  47. Fukushima, H., 1967. A brief nota on diatom flora of Antarctic inland waters. In: T. Nagata (ed.) Proceedings of the Symposium on Pacific-Antarctic Sciences. Eleventh Pacific Science Congress, Tokyo.Google Scholar
  48. Fukushima, H., 1968. Algal vegetation of the Kasumi Rock ice-free area, Prince Olav Coast, Antarctica. Antarctic Record, 31: 73–86.Google Scholar
  49. Fukushima, H., 1969. Diatom vegetation near McMurdo station, Ross Island Antarctica. Antarctic Record, 34: 74–78.Google Scholar
  50. Goldman, C. R., 1963. The measurement of primary productivity and limiting factors in freshwater with carbon-14. In: M. S. Doty (ed.) Conference on Primary Productivity Measurement — Marine and Freshwater. University of Hawaii, 1961. U.S. Atomic Energy Commission.Google Scholar
  51. Goldman, C. R., 1964. Primary productivity studies in Antarctic lakes. In: R. Carrick, M. W. Holdgate & J. Prevost (eds.) Biologie Antarctique. Hermann, Paris.Google Scholar
  52. Goldman, C. R., Mason, D. T. & Hobbie, J. E., 1967. Two Antarctic desert lakes. Limnol. Oceanogr. 12: 295–310.Google Scholar
  53. Goldman, C. R., Mason, D. T. & Wood, B. J. B. 1963. Light injury and inhibition in Antarctic freshwater phytoplankton. Limnol. Oceanogr. 8: 313–322.Google Scholar
  54. Goldman, C. R., Mason, D. T. & Wood, B. J. B., 1972 Comparative study of the limnology of two small lakes on Ross Island, Antarctica. In: G. A. Llano (ed.) Antarctic Terrestrial Biology. American Geophysical Union, Washington, D.C.Google Scholar
  55. Goto, S., Sugiyama, J. & Iizuka, H., 1969. A taxonomic study of Antarctic yeasts. Mycologia, 61: 748–774.Google Scholar
  56. Hand, R. M., 1980. Bacterial populations of two saline Antarctic lakes. In: P. A. Trudinger, M. R. Walter (eds.). Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Australian Academy of Science, Canberra.Google Scholar
  57. Hand, R. M. & Burton, H. R., 1981. Microbial ecology of an Antarctic saline meromictic lake. In: W. D. Williams (ed.) Salt Lakes: Proceedings of an International Symposium on Athalassic (Inland) Salt Lakes. Junk, The Hague.Google Scholar
  58. Harding, J. P., 1941. Lower Crustacea. Sci. Rep. Brit. Graham Land Exped., 1934–1937, 1: 319–322.Google Scholar
  59. Harris, H. J. H., Cartwright, K. & Torii, T., 1979. Dynamic chemical equilibrium in a polar desert pond: a sensitive index of meterological cycles. Science, N.Y. 204: 301–303.Google Scholar
  60. Hellebust, J. A., 1965. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206.Google Scholar
  61. Herbert, R. A. & Bell, C. R., 1973. Nutrient cycling in freshwater lakes on Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 37: 15–20.Google Scholar
  62. Heywood, R. B., 1972. Antarctic limnology: A review. Br. Antarct. Surv. Bull. 29: 35–65.Google Scholar
  63. Heywood, R. B., 1977a. Antarctic freshwater ecosystems: review and synthesis. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.Google Scholar
  64. Heywood, R. B., 1977b. A limnological survey of the Ablation Point area, Alexander Island, Antarctica. Phil. Trans. R. Soc. Lond. Ser. B, 279: 39–54.Google Scholar
  65. Higa, A. & Cazzulo, J. J., 1975. Some properties of the citrate synthase from the extreme halophile, Halobacterium cutirubrum. Biochem. J. 147: 267–274.Google Scholar
  66. Hindak, F. & Komarek, J., 1968. Cultivation of the cryosestonic alga, Koliella tatrae (Kol) Hind. Biol. Planta, 10: 95–97.Google Scholar
  67. Hirano, M., 1965. In: P. van Oye and J. van Mieghem (eds.) Biogeography and Ecology in Antarctica. Junk, The Hague.Google Scholar
  68. Holdgate, M. W., 1977. Terrestrial ecosystems in the Antarctic. Phil. Trans. R. Soc. Lond. Ser. B, 279: 5–25.Google Scholar
  69. Holm-Hansen, O., 1964. Isolation and culture of terrestrial and fresh-water algae of Antarctica. Phycologia, 4: 43–51.Google Scholar
  70. Horner, R. & Alexander, V., 1972. Algal populations in arctic sea-ice: an investigation of heterotrophy. Limnol. Oceanogr. 17: 454–458.Google Scholar
  71. Horowitz, N.H., Cameron, R. E. & Hubbard, J. S., 1972. Microbiology of the Dry Valleys of Antarctica. Science, N.Y. 176: 242–245.Google Scholar
  72. Inniss, W. E. & Ingraham, J. L., 1978. Microbial life at low temperatures: mechanisms and molecular aspects. In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.Google Scholar
  73. Inoue, K., 1976. Quantitative ecology of microorganisms at Syowa station in Antarctica and isolation of psychrophiles. J. gen. Appl. Microbiol. 22: 143–150.Google Scholar
  74. Inoue, K. & Kamagata, K., 1976. Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J. gen. Appl. Microbiol. 22: 165–176.Google Scholar
  75. Ito, K. & Fukuchi, M., 1978. Harpacticus furcatus Lang from the Antarctic Peninsula, with reference to the copepodid stages (Copepoda: Harpacticoida). Antarctic Record, 61, 40–64.Google Scholar
  76. Jørgensen, E. G., 1968. The adaptation of marine algae. II. Aspects of the temperature adaptation of Skeletonema costatum. Physiologia Pl. 21: 423–427.Google Scholar
  77. Johnson, R. M., Madden, J. M. & Swafford, J. R., 1978. Taxonomy of Antarctic bacteria from soils and air primarily of the McMurdo station and Victoria Land dry valleys region. In: Antarctic Research Series 30, Terrestrial Biology III. American Geophysical Union, Washington, D.C.Google Scholar
  78. Kalff, J., Welch, H. E. & Holmgren, S. K., 1972. Pigment cycles in two high-arctic Canadian lakes. Verh. Inter. Ver. Limnol. 18: 250–256.Google Scholar
  79. Kao, O. H. W., Burns, D. S. & Town, W. R., 1973. The characterization of c-phycocyanin from an extremely halotolerant blue-green alga, Coccochloris elabens. Biochem. J. 131: 39–50.Google Scholar
  80. Karasawa, S. & Fukushima, H., 1977. Diatom flora and environmental factors in some freshwater ponds of East Ongul Island. Antarctic Record, 59: 46–53.Google Scholar
  81. Kerry, K. R., Grace, D. R., Williams, R. & Burton, H. R., 1977. Studies on some saline lakes of the Vestfold Hills, Antarctica. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.Google Scholar
  82. Kol, E., 1970. Algae from the soil of the Antarctic. Acta Bot. Acad. Sci. Hung. 16: 313–319.Google Scholar
  83. Koob, D. D. & Leister, G. L., 1972. Primary productivity and associated physical, chemical, and biological characteristics of Lake Bonney: a perennially ice covered lake in Antarctica. In: G. A. Llano (ed.) Antarctic Terrestrial Biology. American Geophysical Union, Washington, D.C.Google Scholar
  84. Korotkevich, V. S., 1958. [Animal population of oasis lakes in East Antarctica.] Inform. Byul. Sov. Antarkt. Eksp. 3: 91–98. [In Russian: English translation 1: (1964): 154–161].Google Scholar
  85. Kriss, A. E., Mitskevich, I. N., Rozanova, E. P. & Osnitskaya, L. K., 1976. Microbiological investigations of Lake Vanda (Antarctica). Microbiology, 45: 917–922. [Translated from Mikrobiologiya, 45: 1075–1081].Google Scholar
  86. Kruchinin, Y. A. & Simonov, I. M., 1967. [New type of Antarctic lake]. Inform. Byul. Sov. Antarkt. Eksp. 66: 12–17. [In Russian: English translation 6: (1968): 552–555].Google Scholar
  87. Kushner, D. J., 1978. Life in high salt and solute concentrations: halophilic bacteria. In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.Google Scholar
  88. Lanyi, J. K., 1974. Salt dependent properties of proteins from extremely halophilic bacteria. Bact. Rev. 38: 272–290.Google Scholar
  89. Likens, G. E., 1964. An unusual distribution of algae in an Antarctic lake. Bull. Torrey bot. Club, 91: 213–217.Google Scholar
  90. Llano, G. A. (ed.), 1977. Adaptations within Antarctic Ecosystems. Proceedings of the Third Symposium on Antarctic Biology. Smithsonian Institution, Washington, D.C.Google Scholar
  91. Markov, K. K., Bardin, V. I., Lebedev, V. L., Orlov, A. I. & Suetova, I. A., 1968. Geografiya Antarktidy. Izdatel'stvo ‘Mysl’. Moscow. [The Geography of Antarctica. Translated from the Russian for the National Science Foundation, Washington D.C., by the Israel Program for Scientific Translations, Jerusalem, 1970].Google Scholar
  92. Marre, E., 1962. Temperature. In: R. A. Lewin (ed.) Physiology and Biochemistry of Algae. Academic Press, New York.Google Scholar
  93. Matheson, A. T., Sprott, G. D., McDonald, I. J. & Tessier, H., 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentrations, and morphology. Can. J. Microbiol. 22: 780–786.Google Scholar
  94. Meyer, G. H., Morrow, M. B., Wyss, O., Berg, T. E. & Littlepage, J., 1962. Antarctica: the microbiology of an unfrozen saline pond. Science, N.Y. 138: 1103–1104.Google Scholar
  95. Miller, D. M., Jones, J. H., Yopp, J. H., Tindall, D. R. & Schmid, W. E., 1976. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch. Mikrobiol. 111: 145–149.Google Scholar
  96. Morita, R. Y., 1975. Psychrophilic bacteria. Bact. Rev. 39: 144–167.Google Scholar
  97. Morris, I. & Farrell, K., 1971. Photosynthetic rates, gross patterns of carbon dioxide assimilation and activities of ribulose diphosphate carboxylase in marine algae grown at different temperatures. Physiologia Pl. 25: 372–377.Google Scholar
  98. Morris, I. & Glover, H. E., 1974. Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar. Biol. 24: 147–154.Google Scholar
  99. Murray, J., 1910. Antarctic Rotifera. In: J. Murray (ed.) British Antarctic Expedition, 1907–1909: Reports on the Scientific Investigations; Biology, Vol. 1 (Pt III): 41–73. Heinemann, London.Google Scholar
  100. Nielsen, A. H. & Lewin, R. A., 1974. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13: 227–264.Google Scholar
  101. Norberg, P., Kaplan, J. G. & Kushner, D. J., 1973. Kinetics and regulation of the salt dependent aspartate transcarbamylase of Halobacterium cutirubrum. J. Bact. 113: 680–686.Google Scholar
  102. Parker, B. C., Koehn, R. C., Paterson, R. A., Craft, J. A., Lane, L. S., Stavros, R. W., Sugg, H. G. Jr., Whitehurst, J. T., Fortner, R. D. & Weand, B. L., 1977. Changes in dissolved organic matter, photosynthetic production, and microbial community composition in Lake Bonney, Southern Victoria Land, Antarctica. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.Google Scholar
  103. Prescott, G. W., 1979. A Contribution to a Bibliography of Antarctic and Subantarctic Algae. Cramer, Vaduz.Google Scholar
  104. Rodhe, W., 1955. Can plankton production proceed during winter darkness in subarctic lakes? Verh. Int. Ver. Limnol. 12: 117–122.Google Scholar
  105. Rodhe, W., Hobbie, J. E. & Wright, R. T., 1966. Phototrophy and heterotrophy in high mountain lakes. Verh. Int. Ver. Limnol. 16: 302–313.Google Scholar
  106. Ryther, J. H. & Guillard, R. R. L., 1962. Studies on marine planktonic diatoms. III. Some effects of temperature on respitation of five species. Can. J. Microbiol. 8: 447–453.Google Scholar
  107. Samsel, G. A. Jr. & Parker, B. C., 1972. Limnological investigations in the area of Anvers Island, Antarctica. Hydrobiologia, 40: 505–511.Google Scholar
  108. Siegel, B. Z., McMurty, G., Siegel, S. M., Chen, J. & La Rock, P., 1979. Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature, Lond. 280: 828–829.Google Scholar
  109. Smayda, T. J., 1969. Experimental observations on the influence of temperature, light, and salinity on cell division of the marine diatom, Detonula confervacea (Cleve) Gran. J. Phycol. 5: 150–157.Google Scholar
  110. Smayda, T. J. & Mitchell-Innes, B., 1974. Dark survival of autotrophic, planktonic marine diatoms. Mar. Biol. 25: 195–202.Google Scholar
  111. Smith, W. O., 1974. The extracellular release of glycollic acid by a marine diatom. J. Phycol. 10: 30–33.Google Scholar
  112. Soeder, C. & Stengel, E., 1974. Physico-chemical factors affecting metabolism and growth rate. In: W. P. D. Stewart (ed.) Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford.Google Scholar
  113. Spurr, B., 1975. Limnology of Bird Pond, Ross Island, Antarctica. N.Z. J. Mar. Freshwat. Res. 9: 547–562.Google Scholar
  114. Stanley, S. O. & Rose, A. H., 1967. Bacteria and yeasts from lakes on Deception Island. Proc. R. Soc. B, 252: 199–207.Google Scholar
  115. Steemann Nielsen, E. & Hansen, V. K., 1959. Light Adaptation in marine phytoplankton populations and its interrelation with temperature. Physiologia Pl. 12: 353–370.Google Scholar
  116. Steemann Nielsen, E. & Jørgensen, E. G., 1968a. The adaptation of plankton algae. I. General part. Physiol. Pl. 21: 401–413.Google Scholar
  117. Steemann Nielsen, E. & Jørgensen, E. G., 1968b. The adaptation of plankton algae. III. With special consideration of the importance in nature. Physiologia Pl. 21: 647–654.Google Scholar
  118. Stewart, W. P. D., 1973. In: N. G. Carr and B. A. Whitton (eds.) The Biology of Blue-Green Algae. Blackwell Scientific Publications, Oxford.Google Scholar
  119. Sudzuki, M., 1979. On the microfauna of the Antarctic region. III. Microbiota of the terrestrial interstices. Mem. Nat. Inst. Polar Res., Special Issue No. 11: 104–126.Google Scholar
  120. Talling, J. F., 1955. The relative growth rates of three plankton diatoms in relation to underwater radiation and temperature. Ann. Bot. 19: 329–341.Google Scholar
  121. Tamiya, H., Sasa, T., Nihei, T. & Ishibashi, S., 1955. Effect of variation of daylength, day and night-temperatures, and intensity of daylight upon the growth of Chlorella. J. gen. Appl. Microbiol. 1: 298–307.Google Scholar
  122. Thomas, C. Q., 1965. On populations in Antarctic meltwater pools. Pacific Sci. 19: 515–521.Google Scholar
  123. Thompson, G. H. & Nelson, K. H., 1956. Concentration of brines and deposition of salts from seawater under frigid conditions. Am. J. Sci. 254: 227–238.Google Scholar
  124. Tominaga, H., 1977. Photosynthetic nature and primary productivity of Antarctic freshwater phytoplankton. Jap. J. Limnol. 38: 122–130.Google Scholar
  125. Torii, T., Yamagata, N., Nakaya, S., Murata, S., Hashimoto, T., Matsubaya, O. & Sakari, H., 1975. Geochemical aspects of McMurdo saline lakes with special emphasis of the distribution of nutrient matters. Mem. Nat. Inst. Polar Res., Special Issue No. 4: 5–29.Google Scholar
  126. Vialov, O. S. & Sdobnikova, N. W., 1961. Sweet-water algae of Antarctica. Acta Soc. Bot. Pol. 30: 766–773.Google Scholar
  127. Waguri, O., 1976. Isolation of microorganisms from salt lakes in the Dry Valley, Antarctica, and their living environment. Antarct. Rec. 57: 80–96.Google Scholar
  128. Waguri, O., Kawamura, Y. & Tubaki, K., 1975. Isolation of microorganisms. In: M. G. Mudrey Jr. and L. D. McGinnis (eds.) Dry Valley Drilling Project, Bulletin No. 5: 111–117. Dry Valley Drilling Project, Department of Geology, Northern Illinois University, De Kalb, Illinois.Google Scholar
  129. Watanuki, T. & Ohno, M., 1975. Cultivation of Antarctic microalgae (2). Isolation of Antarctic diatom Achnanthes brevipes var. intermedia from the bottom sand of the salt lakes at Skarvs Nes in Lützow-Holm Bay, Antarctica. Antarctic Record 54: 94–100.Google Scholar
  130. Watanuki, T. & Ohno, M., 1976. Cultivation of Antarctic microalgae (3). Isolation and culture of Antarctic endemic diatom Tropidoneis laevissima W. & G. S. West from the bottom sand of the salt lake Suribati at Skarvs Nes in Lützow-Holm Bay Antarctica. Antarctic Record 56: 33–36.Google Scholar
  131. Watt, W. D., 1966. Release of dissolved organic material from the cells of phytoplankton populations. Proc. Roy. Soc. Lond. Ser. B, 164: 521–551.Google Scholar
  132. Weand, B. L., Hoehn, R. C. & Parker, B. C., 1976. Trace element distribution in an Antarctic meromictic Lake. Hydrobiol. Bull. 10: 104–114.Google Scholar
  133. West, W. & West, G. S., 1910. Freshwater algae. In: J. Murray (ed.) British Antarctic Expedition, 1907–1909: Reports on the Scientific Investigations; Biology, Vol. 1 (Pt. VIII): 263–298. Heinemann, London.Google Scholar
  134. Whitman, C. M., Hoehn, R. C., Krutchkoff, R. G. & Parker, B. C., 1977. Mathematical models of benthic and plankton communities in Lake Bonney, South Victoria Land, Antarctic. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.Google Scholar
  135. Wilce, R. T., 1967. Heterotrophy in arctic sublittoral seaweeds: an hypothesis. Bot. Mar. 10: 185–197.Google Scholar
  136. Williams, R., 1979. Phytoplankton populations in an Antarctic saline lake. M.Sc. thesis, University of Melbourne.Google Scholar
  137. Willoughby, L. G., 1971. Aquatic fungi from an Antarctic island and a tropical lake. Nova Hedwigia, 22: 469–488.Google Scholar
  138. Wright, R. T., 1964. Dynamics of a phytoplankton community in an ice-covered lake. Limnol. Oceanogr. 9: 163–178.Google Scholar
  139. Wright, R. T. & Hobbie, J. E., 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology, 47: 447–464.Google Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • S. W. Wright
    • 1
  • H. R. Burton
    • 1
  1. 1.Department of Science and TechnologyAntarctic DivisionKingstonAustralia

Personalised recommendations