, Volume 81, Issue 1, pp 33–46 | Cite as

4. The microflora

Adaptations to life in extremely saline lakes
  • Lesley J. Borowitzka


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasen, A. J., Eimhjellen, K. E. & Liaaen-Jensen, S., 1969. An extreme source of β-carotene. Acta chem. scand. 23: 2544–2545.Google Scholar
  2. Baas-Becking, L. G. M., 1928. On organisms living in concentrated brine. Tijdschr. ned. dierk. Vereen. 3, Ser. 1: 6–9.Google Scholar
  3. Baas-Becking, L. G. M. & Kaplan, I. R., 1956. The microbiological origin of the sulphur nodules of Lake Eyre. Trans. R. Soc. S. Aust. 79: 52–65.Google Scholar
  4. Ben-Amotz, A. & Avron, M., 1972. Photosynthetic activities of the halophilic alga, Dunaliella parva. Pl. Physiol. Lancaster, 49: 240–243.Google Scholar
  5. Ben-Amotz, A. & Avron, M., 1973a. The role of glycerol in the osmotic regulation of the halophilic alga, Dunaliella. Pl. Physiol. Lancaster, 51: 875–878.Google Scholar
  6. Ben-Amotz, A. & Avron, M., 1973b. NADP specific dihydroxyacetone reductase from Dunaliella parva. FEBS Letters, 29: 153–155.Google Scholar
  7. Borowitzka, L. J., 1981. Solute accumulation and regulation of cell water activity. In: L. G. Paleg and D. Aspinall (eds.). Physiology and Biochemistry of Drought Resistance in Plants. Academic Press.Google Scholar
  8. Borowitzka, L. J. & Brown, A. D., 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch. Microbiol. 96: 37–52.Google Scholar
  9. Borowitzka, L. J., Demmerle, D., Mackay, M. A. & Norton, R. S., 1980. Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210: 650–651.Google Scholar
  10. Borowitzka, L. J., Kessley, D. S. & Brown, A. D., 1977. The salt relations of Dunaliella. Further observations on glycerol production and its regulation. Arch. Microbiol. 113: 131–138.Google Scholar
  11. Brock, T. D., 1975. Salinity and the ecology of Dunaliella from the Great Salt Lake. J. gen. Microbiol. 89: 285–292.Google Scholar
  12. Brock, T. D., 1976. Halophilic blue-green algae. Arch. Microbiol. 107: 109–111.Google Scholar
  13. Brock, T. D., 1979. Ecology of saline lakes. In: M. Shilo (ed.) Strategies of Microbial Life in Extreme Environments. Dahlem Konferenzen, Berlin.Google Scholar
  14. Brown, A. D., 1964. Aspects of bacterial response to the ionic environment. Bact. Rev. 28: 296–329.Google Scholar
  15. Brown, A. D., 1976. Microbial water stress. Bact. Rev. 40: 803–846.Google Scholar
  16. Brown, A. D. & Borowitzka, L. J., 1979. Halotolerance of Dunaliella. In: M. Levandowsky & S. H. Hutner (eds.) Physiology and Biochemistry of Protozoa. Vol. 1. Academic Press, New York.Google Scholar
  17. Brown, A. D. & Cho, K. Y., 1970. The walls of extremely halophilic cocci. Gram-positive bacteria lacking muramic acid. J. gen. Microbiol. 62: 267–270.Google Scholar
  18. Brown, R. M., Johnson, C. & Bold, H. C., 1968. Electron and phase contrast microscopy of sexual reproduction in Chlamydomonas moewusii. J. Phycol. 4: 100–120.Google Scholar
  19. Butcher, R. W., 1959. An introductory account of the smaller algae of British Coastal Waters. Part 1. Fisheries Investigations, Series IV. Her Majesty's Stationary Office, London.Google Scholar
  20. Castenholz, R. W., 1969. Thermophilic blue-green algae and the thermal environment. Bact. Rev. 33: 476–504.Google Scholar
  21. Christian, J. H. B. & Waltho, J. A., 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. biophys. Acta 65: 506–508.Google Scholar
  22. Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.Google Scholar
  23. Danon, A. & Stoeckenius, W., 1974. Photophosphorylation in Halobacterium halobium. Proc. natn. Acad. Sci. U.S.A. 71: 1234–1238.Google Scholar
  24. Drouet, F. & Daily, W. A., 1956. Revision of the coccoid myxophyceae. Butler University Botanical Studies, 12: 1–222.Google Scholar
  25. Gibbons, N. E., 1974. Halobacteriaceae. In: R. E. Buchanan and N. E. Gibbons (eds.) Bergey's Manual of Determinative Bacteriology. Eighth Edition. Williams and Wilkins, Baltimore.Google Scholar
  26. Ginzburg, M., 1969. The unusual membrane permeability of two halophilic unicellular organisms. Biochim. biophys. Acta 173: 370–376.Google Scholar
  27. Ginzburg, M., Sachs, L. & Ginzburg, B. Z., 1970. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J. gen. Physiol. 55: 187–207.Google Scholar
  28. Ginzburg, M., Sachs, L. & Ginzburg, B. Z., 1971. Ion metabolism in a Halobacterium. II. Ion concentrations in cells at different levels of metabolism. J. Membrane Biol. 5: 78–101.Google Scholar
  29. Hamburger, C., 1905. Zur Kenntnis der Dunaliella salina und einer Amöbe aus Salinenwasser von Cagliari. Arch. Protistenk. 6: 111–130.Google Scholar
  30. Heimer, Y. M., 1973. The effects of NaCl, KCl and glycerol on the activity of nitrate reductase of a salt-tolerant and two non-tolerant plants. Planta, 113: 279–281.Google Scholar
  31. Hescox, M. A. & Carlberg, D. M., 1972. Photoreactivation in Halobacterium cutirubrum. Can. J. Microbiol. 18: 981–985.Google Scholar
  32. Hof, T. & Fremy, P., 1933. On myxophyceae living in strong brines. Recl. Trav. Bot. Neerl. 30: 140–162.Google Scholar
  33. Imhoff, J. F., Hashwa, F. & Trüper, H. G., 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch. Hydrobiol. 84: 381–388.Google Scholar
  34. Imhoff, J. F. & Trüper, H. G., 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch. Microbiol. 114: 115–121.Google Scholar
  35. Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L. & Bruff, B. S., 1968. Effects of salts on the halophilic alga Dunaliella viridis. J. Bact. 95: 1461–1468.Google Scholar
  36. Jørgensen, B. B. & Cohen, Y., 1977. Solar Lake (Sinai). 5. The sulphur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–660.Google Scholar
  37. Kao, O. H. W., Berns, D. S. & Town, W. R., 1973. The characterisation of c-phycocyanin from an extremely halotolerant blue-green alga, Coccochloris elabens. Biochem. J. 131: 39–50.Google Scholar
  38. Kaplan, I. R. & Friedmann, A., 1970. Biological productivity in the Dead Sea. 1. Microorganisms in the water column. Isr. J. Chem. 8: 513–528.Google Scholar
  39. Kates, M., 1972. Ether-linked lipids. In: F. Snyder (ed.) Ether lipids. Chemistry and Biology. Academic Press, New York.Google Scholar
  40. Kelly, M., Norgard, S. & Liaaen-Jensen, S., 1970. Bacterial carotenoids XXXI. C50; carotenoids 5. Carotenoids of H. salinarium, especially bacterioruberin. Acta chem. scand. 24: 2169–2182.Google Scholar
  41. Krishna Pillai, V., 1955. Observations on the ionic composition of blue-green algae growing in saline lagoons. Proc. natn. Inst. Sci. India, 21B: 90–102.Google Scholar
  42. Lanyi, Y. K., 1974. Salt dependent properties of proteins from extremely halophilic bacteria. Bact. Rev. 38: 272–290.Google Scholar
  43. Larsen, H., 1963. Halophilism. In: I. C. Gunsalus and R. Y. Stanier (eds.) The Bacteria. Vol. 4. Academic Press, New York.Google Scholar
  44. Lerche, W., 1937. Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch. Protistenk. 88: 236–268.Google Scholar
  45. Loeblich, L. A., 1972. Studies on the brine flagellate, Dunaliella salina. Dissertation, University of California at San Diego.Google Scholar
  46. Marquez, E. D. & Brodie, A. F., 1973. The effect of cations on the heat stability of a halophilic nitrate reductase. Biochim. biophys. Acta, 321: 84–89.Google Scholar
  47. Marrè, E. & Servettaz, O., 1959. Sul meccanismo di adattamento a condizioni osmotiche estreme in Dunaliella salina. II. Rapporto fra concentrazioni del mezzo esterno e composizione del succo cellulare. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Ser. 8, 26: 272–278.Google Scholar
  48. Marshall, C. L., Wicken, A. J. & Brown, A. D., 1969. The outer layer of the cell envelope of Halobacterium halobium. Can. J. Biochem. 47: 71–74.Google Scholar
  49. Miller, D. M., Jones, J. H.,Yopp, J. H., Tindall, D. R. & Schmid, W. D., 1976. Ion metabolism in a halophilic bluegreen alga, A phanothece halophytica. Arch. Microbiol. 111: 145–149.Google Scholar
  50. Mullakhanbhai, M. F. & Larsen, H., 1975. Halobacterium volcanii spec. nov., a Dead Sea Halobacterium with a moderate salt requirement. Arch. Mikrobiol. 104: 207–214.Google Scholar
  51. Pollard, A. & Wyn Jones, R. G., 1979. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291–298.Google Scholar
  52. Post, F. J., 1977. The microbial ecology of the Great Salt Lake. Microbial Ecol. 3: 143–165.Google Scholar
  53. Pugh, E. L., Wassef, M. K. & Kates, M. 1971. Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Can. J. Biochem. 49: 953–958.Google Scholar
  54. Raymond, J. C. & Sistrom, W. R., 1969. Ectothiorhodospira halophila: A new species of the genus Ectothiorhodospira. Arch. Mikrobiol. 69: 121–126.Google Scholar
  55. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G., 1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bact. Rev. 35: 171–205.Google Scholar
  56. Téodoresco, E. C., 1905. Organisation et développement du Dunaliella, nouveau genre de Volvocacée-Polyblepharidée. Beihefte zum Botanischen Zentralblatt, 18: 215–232.Google Scholar
  57. Téodoresco, E. C., 1906. OObservations morphologiques et biologiques sur le genre Dunaliella. Revue gén. bot. 18: 353–371.Google Scholar
  58. Tindall, D. R., Yopp, J. H., Miller, D. M. & Schmid, W. E., 1978. Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia, 17: 179–185.Google Scholar
  59. Tindall, D. R., Yopp, J. H., Schmid, W. E. & Miller, D. M., 1977. Protein and amino acid composition of the obligate halophile Aphanothece halophytica (Cyanophyta). J. Phycol. 13: 127–133.Google Scholar
  60. Trezzi, F., Galli, M. G. & Bellini, E., 1966. The resistance of D. salina to osmotic stresses: Ultrastructure researches. Giorn. Bot. Ital. 72: 255–263.Google Scholar
  61. Torsvik, T. & Dundas, I. D., 1974. Bacteriophage of Halobacterium salinarium. Nature, Lond. 248: 680–681.Google Scholar
  62. Van Auken, O. W. & McNulty, I. B., 1973. The effect of environmental factors on the growth of a halophilic species of algae. Biol. Bull. mar. biol. Lab., Woods Hole, 145: 210–222.Google Scholar
  63. Van Neil, C. B., 1931. On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol. 3: 1–112.Google Scholar
  64. Volcani, B. E., 1944. The Microorganisms of the Dead Sea. In: Papers collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Collective Volume. Daniel Sieff Research Institute, Rehovoth, Israel.Google Scholar
  65. Wais, A. C., Kon, M., MacDonald, R. E. & Stollar, B. D., 1975. Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature, Lond. 256: 314–315.Google Scholar
  66. Yurina, E. V., 1966. Experiments in the cultivation of the halobiont algae Asteromonas gracilis and Dunaliella salina. Vestn. Mosk. Univ. 21: 76–83.Google Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • Lesley J. Borowitzka
    • 1
  1. 1.Roche Research Institute of Marine PharmacologyDee WhyAustralia

Personalised recommendations