Hydrobiologia

, Volume 149, Issue 1, pp 53–66 | Cite as

Interactions between sediment contaminants and benthic organisms

  • Trefor B. Reynoldson

Abstract

This paper provides an overview of interactions between contaminated sediments and bethic invertebrates in marine and freshwater systems using selected examples from the available literature. Impacts on the benthic community (e.g., acute toxicity, morphological and genetic changes in the Chironomidae and Oligochaeta, and induction of carcinogenesis) and changes in community structure are discussed. Processes by which benthic organisms transfer contaminants from sediments to other components of the aquatic system such as, bioaccumulation, trophic transfer, migration biodegradation, bioturbation and biodeposition are examined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, R. J., 1984. The role of particulate matter in the fate of contaminants in aquatic ecosystems: Part I, Transport and burial. Part II, Bioavailability, recycling and bioaccumulation. National Water Research Institute Contract No. 84-18. 115 pp.Google Scholar
  2. Baker, R. A., 1980. Contaminants and Sediments. Ann Arbor Science (2 Vols.), Ann Arbor, Michigan. 607 pp.Google Scholar
  3. Barton, D. R. & R. R. Wallace, 1979. The effects of an experimental spillage of oil sands tailings sludge on benthic invertebrates. Eviron. Pollut. 18: 305–312.Google Scholar
  4. Beasley, T. M. & S. W. Fowler, 1976. Plutonium and Americium: Uptake from contaminated sediments by the polychaete Nereis diversicolor. Mar. Biol. 38: 95–100.Google Scholar
  5. Bevenue A., H. W. Hylin, Y. Kawano & T. W. Kelly, 1972. Organo chlorine pesticide residues in water, sediment, algae and fish: Hawaii — 1970–71. Pest. Monit. J. 6: 56–64.Google Scholar
  6. Bindra, K. S. & K. J. Hall, 1977. Geochemical partitioning of trace metals in sediments and factors affecting bioaccumulation in benthic organisms. Unpublished report for NRC, Ottawa. 59 pp.Google Scholar
  7. Bindra, K. S. & K. J. Hall, 1978. Bioaccumulation of selected trace metals by benthic invertebrates in laboratory bioassays. Unpublished report for NRC, Ottawa, 25 pp.Google Scholar
  8. Boddington, M. J., D. R. Miller & A. S. W. DeGreitas, 1979. The effects of benthic invertebrates on the clearance of mercury from contaminated sediments. Ecotoxicol. Environ. Safety 3: 236–244.Google Scholar
  9. Bothner, M. H., 1973. Mercury: some aspects of its marine geochemistry in Puget Sound, Washington. Ph.D. thesis, University of Washington, Seattle. 126 pp.Google Scholar
  10. Brown, B. E., 1977. Effects of mine drainage on the River Hayle, Cornwall. (a) Factors affecting concentrations of copper, zinc and iron in water, sediments and dominant invertebrate fauna. Hydrobiologia 52: 221–233.Google Scholar
  11. Bryan, G. W., 1976. Heavy metal contamination in the sea. In Marine Pollution. R. Johnson (ed.), Academic Press, New York: 185–302.Google Scholar
  12. Burns, K. A., 1976. Hydrocarbon metabolism in the intertidal fiddler crab (Uca pugnax). Mar. Biol. 36: 5–11.Google Scholar
  13. Burns, K. A. & J. M Teal, 1979. The West Falmouth oil spill: hydrocarbons in the salt marsh ecosystem. Estuar. coast. mar. Sci. 8: 349–360.Google Scholar
  14. Burrows, I. G. & B. A. Whitton, 1983. Heavy metals in water sediments and invertebrates from a metal contaminated river free of organic pollution. Hydrobiologia 106: 263–273.Google Scholar
  15. Chapman, P. M., L. M. Churchland, P. A. Thomson & E. Michnowsky, 1979. Heavy metal studies with oligochaetes. In First International Symposium on Aquatic Oligochaete Biology. R. O. Brinkhurt & D. G. Cook (eds.). Plenum Press, New York. 529 pp.Google Scholar
  16. Chapman, P. M., G. A. Vigers, M. A. Farrell, R. N. Dexter, E. A. Quinlan, R. M. Kocan & M. Landot, 1982. Survey of biological effects of toxicants upon Puget Sound biota I. Broad scale toxicity survey. NOAA Tech. Mem. OMPA-25. Boulder, Colorado. 98 pp.Google Scholar
  17. Chapman, P. M., D. R. Munday, J. Morgan, R. Fink, R. M. Kocan, M. L. Landolt and R. N. Dexter, 1983. Survey of biological effects of toxicants upon Puget Sound biota II. Tests of reproductive impairment. NOAA Tech. Rep. NOS 102 OMS 1 Rockville, MD. 58 pp.Google Scholar
  18. Chatarpaul L., J. B. Robinson & N. K. Kaushik, 1980. Effects of tubificid worms on denitrification and nitrification in strean sediment. Can. J. Fish. Aquat. Sci. 37: 656–663.Google Scholar
  19. Davis, R. B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.Google Scholar
  20. Davis, R. B., D. L. Thurlow & F. E. Brewster, 1975. Effects of burrowing tubificid worms on the exchange of phosphorus between lake sediment and overlying water. Verh. int. Ver Limnol. 19: 382–394.Google Scholar
  21. Dean, J. M., 1974. The accumulation of65Zn and other radionuclides by tubificid worms. Hydrobiologia 45: 33–38.Google Scholar
  22. Dixit, S. S. & D. Witcomb, 1983. Heavy metal burden in water substrate and macroinvertebrate body tissue of polluted River Irwell (England). Environ. Pollut. 6: 161–172.Google Scholar
  23. Eadie, B. J., P. F. Landrum & W. Faust, 1982a. Polycyclic aromatic hydrocarbons in sediments, pore water and the amphipod, Pontoporeia hoyi from Lake Michgan USA. Chemosphere 11 (9): 847–858.Google Scholar
  24. Eadie, B. J., W. R. Fauster, W. S. Gardner & T. Nalepa, 1982b Polycyclic aromatic hydrocarbons in sediments and associated benthos in Lake Erie. Chemosphere 11(2): 185–191.Google Scholar
  25. Eadie, B. J., W. R. Faust, P. F. Landrum, N. R. Morehead W. S. Gardner & T. Nalepa, 1983. Bioconcentration of PAH by some benthic organisms of the Great Lakes. In Polynuclear Aromatic Hydrocarbons: Formation metabolism and measurement. M. Cooke & A. J. Dennis (eds.), Battelle Press, Columbus, Ohio.Google Scholar
  26. Elder, D. L., S. W. Fowler & G. G. Polikarpov, 1979. Remobilization of sediment associated PCB's by the worm Nereis diversicolor. Bull. environ. Contam. Toxicol. 21: 448–452.Google Scholar
  27. Eyres, J. P. & M. Pugh-Thomas, 1978. Heavy metal pollution of the River Irwell demonstrated by analysis of substrate materials and macroinvertebrate tissue. Envir. Pollut. 16: 129–136.Google Scholar
  28. Fisher, J. B., 1984. Effects of Macrobenthos on the Chemical Diagenesis of Freshwater Sediments. In Animal-Sediment Relations. P. L. McCall & M. J. S. Tevesz (eds.), Plenum Press, New York.Google Scholar
  29. Fisher, J. B. & G. Matisoff, 1981. High resolution vertical profiles of pH in recent sediments. Hydrobiologia 79: 277–284.Google Scholar
  30. Fowler, S. W., G. G. Polikarpov, D. L. Elder, P. Parsin & J. P. Villeneuve, 1978. Polychlorinated Biphenyls: accumulation from contaminated water by the polychaete Nereis diversicolor. Mar. Biol. 48: 303–309.Google Scholar
  31. Gilfillan, E. S. & J. H. Vandermeulen, 1978. Alterations in growth and physiology of soft shell clams (Mya arenaria), chronically oiled with Bunker C from Chedabucto Bay, Nova Scotia 1970–76. J. Fish Res. Bd Can. 35: 630–636.Google Scholar
  32. Goerkeet H., G. Eder, K. Weber & W. Ernster, 1979. Patterns of organochlorine residues in animals of different trophic levels from the Weser Estuary. Mar. Pollut. Bull. 10: 127–132.Google Scholar
  33. Gordon, D., J. Dak & P. Keizer, 1978. Importance of sediment working by the deposit feeding polychaete Arenicola marina on the watering rate of sediment bound oil. J. Fish Res. Bd Can. 35: 591–603.Google Scholar
  34. Greichus, Y., A. Greichus, A. Amman, J. Call, D. C. D. Hamman & R. M. Pott, 1977. Insecticides, polychlorinated biphenyls and metals in African Lake ecosystems. I. Hartbeesport Dam, Transvaal and Vöelvlei Dam, Cape Province, Republic of South Africa. Arch. environ. Contam. Toxicol. 6: 371–383.Google Scholar
  35. Harsbarger, J. C., 1977. Role of the registry of tumors in lower animals in the study of environmental carcinogenesis in aquatic animals. In Aquatic Pollutant and Biologic Effects with emphasis on Neoplasia. H. F. Krayhill, C. J. Dowe, J. C. Harshbarger & R. G. Tarditt (eds.). N.Y. Academy Science.Google Scholar
  36. Haven, D. & R. Morales-Alamo, 1972. Biodeposition as a factor in sedimentation of fine suspended solids in estuaries. In Environmental Framework of Coastal Plain Estuaries. B. Nelson (ed.), Geol. Soc. Amer. Mem. 133: 121–130.Google Scholar
  37. Haven, D. & R. Morales-Alamo, 1970. Filtration of particles from suspension by the American oyster (Crassostrea virginica). Biol. Bull. 139: 248–264.Google Scholar
  38. Haven, D. & R. Morales-Alamo, 1966. Aspects of bio-deposition by oysters and other invertebrate filter feeders. Limnol. Oceanogr. 11: 487–498.Google Scholar
  39. Jacobsen, O. S., 1977. The influence of bottom fauna density on the exchange rates of phosphate and inorganic nitrogen in a eutrophic profundal sediment. Proc. 5th Nordic Sediment Symposium, Skov, Denmark: 39–49.Google Scholar
  40. Jernelöv, A., 1970. Release of methyl mercury from sediments with layers containing inorganic mercury at different depths. Limnol. Oceanogr. 15: 958–960.Google Scholar
  41. Karickhoff, S. W. & K. R. Morris, 1985. Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ. Sci. Technol. 19: 51–56.Google Scholar
  42. Krayhill, H. F., C. G. Dawe, J. C. Harsbarger & R. G. Tarditt (eds.) 1977. Aquatic Pollutants and Biologic effects with emphasis on Neoplasia. NY. Academy Science.Google Scholar
  43. Lang, C. & B. Lang-Dobler, 1979. The chemical environment of tubificid and lumbriculid worms according to the pollution level of the sediment. Hydrobiologia 65: 273–282.Google Scholar
  44. Lock, M. A., R. R. Wallace & D. W. S. Westlake, 1982. Biodegradation of synthetic crude oil in two rivers of Northern Alberta, Canada. Wat. Res. 16: 497–500.Google Scholar
  45. Lock, M. A., R. R. Wallace, D. R. Barton & S. Charlton, 1981. The effects of synthetic crude oil on microbial and macroinvertebrate benthic river communities — Part 1: colonisation of synthetic crude oil contaminated substrata. Envir. Pollut. (Series A) 24: 207–217.Google Scholar
  46. Malins, D. C., 1977. Biotransformation of petroleum hydrocarbons in marine organisms indigenous to the arctic and subarctic. In Fate and Effects of Petroleum Hydrocarbons in Marine Ecosystems and Organisms. D. A. Wolfe (ed.), Pergamon Press, Elmsford, New York: 47–59.Google Scholar
  47. Mathis, J. & T. T. Cummings, 1973. Selected metals in sediments, water and biota in the Illinois River. J. Wat. Pollut. Contr. Fed. 45: 1573–1583.Google Scholar
  48. McLeese, D. W., C. D. Metcalfe & D. S. Pezzack, 1980. Uptake of PCBs from sediment by Nereis virens and Crangan septemspinosa. Arch. environ. Contam. Toxicol. 9: 507–518.Google Scholar
  49. Milbrink, G., 1983. Characteristic deformities in tubificid oligochaetes inhabiting polluted bays of Lake Vänern, Southern Sweden. Hydrobiologia 106: 169–184.Google Scholar
  50. Moore, R. L., L. L. Osborne & R. W. Davies, 1980. The mutagenic activity in a section of the Sheep River, Alberta receiving a chlorinated sewage effluent. Wat. Res. 14: 917–920.Google Scholar
  51. Namminga, H. & J. Wilhm, 1977. Heavy metals in water, sediments and chironomids. J. Wat. Pollut. Contr. Fed. 49: 1725–1731.Google Scholar
  52. Nicholas, W. L. & M. Thomas, 1978. Biological release and recycling of toxic metals from lake and river sediments. Australian Water Resources Technical Paper 33. Nat. Dept., Canberra, Australia. 99 pp.Google Scholar
  53. Oliver, B. G., 1984. Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. J. Can. Fish. Aquat. Sci. 41: 878–883.Google Scholar
  54. Osborne, L. L., R. W. Davies, K. R. Dixon & R. L. Moore, 1982. Mutagenic activity of fish and sediments in the Sheep River, Alberta. Wat. Res. 16: 899–902.Google Scholar
  55. Patrick, E. M. & M. Loutit, 1976. Passage of metals in effluent through bacteria to higher organisms. Wat. Res. 10: 333–335.Google Scholar
  56. Patrick, W. M. & M. Loutit, 1978. Passage of metals to freshwater fish from their food. Wat. Res. 12: 395–398.Google Scholar
  57. Pentreath, R. J., 1973a. the accumulation and retention of65Zn and54Mn by the plaice Pleuronectes platessa. J. exp. mar. Biol. Ecol. 12: 1–18.Google Scholar
  58. Pentreath, R. J., 1973b. The accumulation and retention of59Fe and50Co by the plaice Pleuronectes platessa. J. exp. mar. Biol. Ecol. 12: 315–326.Google Scholar
  59. Pentreath, R. J., 1976. Some futher studies on the accumulation and retention of65Zn and54Mn by the plaice Pleuronectes platessa. J. exp. mar. Biol. Ecol. 21: 179–189.Google Scholar
  60. Petr, T., 1977. Bioturbation and exchange of chemicals in the mud-water interface. In Interactions between sediments and freshwater. H. L. Golterman (ed.), W. Junk, The Hague, Netherlands: 216–226.Google Scholar
  61. Poddubnaja. T. L. & Y. I. Sorokin, 1961. The depth of the layer of tubificid worm's optimal feeding in connection with their movement in the sediment. Bull. Inst. Biol. Reserv. Acad. Sci. USSR 10: 14–17 (in Russian).Google Scholar
  62. Podubnaja, T. L., 1961. Materials on the nutrition of mass species of tubificid worms in the Rybinsk Reservoir. Trans. Inst. Biol. Inland Waters Acad. Sci., USSR. 4: 219–231 (in Russian).Google Scholar
  63. Prosi, G., 1979. Bioavailability and heavy metals in different freshwater sediments: uptake in macroinvertebrates and biomobilization. International Conference management and Control of Heavy Metals in Environment, London, England: 288–291.Google Scholar
  64. Rhead, M. M., 1974. The fate of DDT and PCBs in the marine environment. In Environmental Chemistry, Vol. I. Publisher, The Chemical Soc., London: 137–154.Google Scholar
  65. Robbins, J. A. & D. N. Edgington, 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochem. Cosmochim Acta 39: 285–304.Google Scholar
  66. Robbins, J. A., J. R. Krezoo & S. C. Mozley, 1977. Radioactivity in sediments of the Great Lakes: Post depositional redistribution by deposit feeding organisms. Earth Plant Sci. Lett. 36: 325–333.Google Scholar
  67. Robbins, J. A., 1982. Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos. Hydrobiologia 92: 611–622.Google Scholar
  68. Roesijadi, G., J. W. Anderson & J. W. Blaylock, 1978. Uptake of hydrocarbons from marine sediments contaminated with Prudhoe Bay crude oil: influence of feeding type of test species and availability of Polycyclic Aromatic Hydrocarbons J. Fish Res. Bd Can. 35: 608–614.Google Scholar
  69. Rosenberg, D. & A. Weins, 1976. Community and species responses of Chironomidae to contamination of freshwaters by crude oil and petroleum products with special reference to the Trail River, NWT. J. Fish Res. Bd Can. 33: 1955–63.Google Scholar
  70. Rubinstein, N. I., C. N., D'Asaro, C. Sommers & F. G. Wilkes, 1980. The effects of contaminated sediment on representative estuarine species and developing benthic communities. In Contaminants and sediments. R. A. Baker (ed.), Ann Arbor Science Publ., Ann Arbor, Michigan: 445–462.Google Scholar
  71. Schoor, W. P. & S. M. Newman, 1976. The effect of Mirex on the burrowing activity of the lugworm (Arenicola cristata). Trans. am. Fish. Soc. 6: 700–703.Google Scholar
  72. Snow, N. B. & D. Rosenberg, 1975. Experimental oil spills on Mackenzie Delta Lakes 1. Effects of Norman Wells crude on Lake 4. Environment Canada. Fish. Mar. Serv. Res. Dev. Tech. Rep. 548: 47 pp.Google Scholar
  73. Sorokin, Y. I., 1966. Carbon 14 Method in the study of nutrition of aquatic animals. Int. Rev. ges. Hydrobiologia 51: 209–226.Google Scholar
  74. Southworth, G. R., B. R. Parkhurst & J. J. Beauchamp, 1979. Accumulations of acridine from water, food and sediments by the Fathead Minnow, Pimephales promelas. Wat. Air Soil Pollut. 12: 331–341.Google Scholar
  75. Spies, R. B. & P. H. Davies, 1979. The infaunal benthos of a natural oil seep in the Santa Barbara Channel. Mar. Biol. 50: 227–237.Google Scholar
  76. Swartz, R. C. & H. Lee, II, 1980. Biological processes affecting the distribution of pollutants in marine sediments. Part I. Accumulation, Trophic transfer, biodegradation and migration. In Contaminants and Sediments, Volume 2. R. A. Baker (ed.), Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  77. Tatem, H. E., 1982. Bioaccumulation of PCB by freshwater prawns and clams exposed to contaminated dredge material. U.S. Army Corps of Engineers Information Exchange Bulletintin V:0–82–3: 1–6.Google Scholar
  78. Teal, J. M., 1977. Food chain transfer of hydrocarbons. In Fate and Effects of Petroleum hydrocarbons in Marine Ecosystems and Organisms. D. A. Wolfe (ed.), Pergamon Press, Elmsford, New York: 175–262.Google Scholar
  79. Varanasi, U. & D. C. Malins, 1977. Metabolism of petroleum hydrocarbons: accumulation and biotransformation in marine organisms. In Effects of petroleum on arctic and subarctic marine environments and organisms, Vol. II, Biological Effects. D. C. Malins (ed.), Academic Press, New York: 175–262.Google Scholar
  80. Warwick, W. F., 1980. Palaeolimnology of the Bay of Quinte, Lake Ontario. 2800 years of cultural influence. Can. Bull. Fish. Aquat. Sci. 206: 1–117.Google Scholar
  81. Wiederholm, T., 1984. Incidence of deformed chironomid larvae (Diptera: Chironomidae) in Swedish Lakes. Hydrobiologia 109: 243–249.Google Scholar
  82. Wentsel, R., A. McIntosh & G. Atchison, 1977. Sublethal effects of heavy metal contaminated sediment on midge larvae (Chironomus tentans). Hydrobiologia 56: 153–156.Google Scholar
  83. Wentsel, R. & A. McIntosh, 1977. Sediment contamination and benthic macroinvertebrate distribution in a metal impacted lake. Envir. Pollut. 14: 187–193.Google Scholar
  84. Wentsel, R., A. McIntosh & P. McAfferty, 1978. Emergence of the midge Chironomus tentans when exposed to heavy metal contaminated sediment. Hydrobiologia 57: 195–196.Google Scholar
  85. Wolfe, D. A., G. W. Thayer & S. M. Adams, 1976. Manganese, Iron, Copper and Zinc in an Eelgrass (Zostera marina) Community. In Radioecology and Energy Resources. C. E. Gushing Jr. (ed.), Ecol. Soc. Am. Spec. Publ. #1.Google Scholar
  86. Wood, L. W., 1975. Role of oligochaetes in the circulation of water and solutes across the mud-water interface. Verh. int. Ver. Limnol. 19: 1530–1533.Google Scholar
  87. Woodwell, G. M., C. F. Wurster & P. A. Isaacson, 1967. DDT residues in an east coast estuary: a case of biological concentration of a persistent insecticide. Science 156: 821–824.Google Scholar
  88. Wyndham, R. C. & J. W. Costerton, 1981. In vitro microbial degradation of bituminous hydrocarbons and in site colonization of bitumen surfaces within the Athabasca Oil Sands Deposit. Appl. environ. Microbiol. 41: 791–800.Google Scholar
  89. Young, D. R. & A. J. Mearns, 1979. Pollutant flow through food webs. 1978 Annual report. Southern California Coastal Water Research Project.Google Scholar
  90. Zauke, G. P., 1981. Cadmium in Gammaridae (Amphipoda: Crustacea) of the rivers Werra and Weser. Geographical variation and correlation to cadmium in sediments. Environ. Pollut. Ser. B. 2: 465–474.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • Trefor B. Reynoldson
    • 1
  1. 1.Great Lakes Regional OfficeInternational Joint CommissionWindsorCanada
  2. 2.Canada Centre for Inland WatersNational Water Research InstituteBurlingtonCanada

Personalised recommendations