Hydrobiologia

, Volume 149, Issue 1, pp 43–52 | Cite as

Partitioning of trace metals in sediments: Relationships with bioavailability

  • A. Tessier
  • P. G. C. Campbell
Article

Abstract

As a result of complex physical, chemical and biological processes, a major fraction of the trace metals introduced into the aquatic environment is found associated with the bottom sediments, distributed among a variety of physico-chemical forms. As these different metal forms will generally exhibit different chemical reactivities, the measurement of the total concentration of a particular metal provides little indication of potential interactions with the abiotic or biotic components present in the environment. In principle, the partitioning of sediment-bound metals could be determined both by thermodynamic calculations (provided equilibrium conditions prevail) and by experimental techniques. The modelling of sediment-bound metals is far less advanced than is that of dissolved species, primarily because the thermodynamic data needed for handling sediment-interstitial water systems are not yet available. The partitioning of a metal among various fractions obtained by experimental techniques (e.g., sequential extraction procedures) is necessarily operationally defined. These methods have, however, provided significant insight into the physico-chemical factors influencing the bioavailability of particulate trace metals; some of these factors are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balistrieri, L. S. & J. W. Murray, 1982. The adsorption of Cu, Pb, Zn and Cd on goethite from major ion seawater. Geochim. Cosmochim. Acta 46: 1253–1265.Google Scholar
  2. Benjamin, M. M. & J. O. Leckie, 1981a. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79: 209–221.Google Scholar
  3. Benjamin, M. M. & J. O. Leckie, 1981b. Competitive adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 83: 410–419.Google Scholar
  4. Campbell, P. G. C. & A. Tessier, 1984. Paleolimnological approaches to the study of acid deposition: metal partitioning in lacustrine sediments. In Proceedings U.S. EPA Workshop on Paleolimnological studies of the history and effects of acidic precipitation. S.A. Norton (ed.), Rockport, Maine, pp. 234–274.Google Scholar
  5. Chao, T. T., 1972. Selective dissolution of manganese oxides from soils and sediments with acidic hydroxylamine hydrochloride. Soil Sci. Soc. Amer. Proc. 36: 764–768.Google Scholar
  6. Chao, T. T. & P. K. Theobald, 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Econ. Geol. 71: 1560–1569.Google Scholar
  7. Chester, R. & M. J. Hughes, 1967. A chemical technique for separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol. 2: 249–262.Google Scholar
  8. Cooper, B. S. & R. C. Harris, 1974. Heavy metals in organic phases of river and estuarine sediment. Mar. Pollut. Bull. 5: 24–26.Google Scholar
  9. Crosby, S. A., D. R. Glasson, A. H. Cuttler, I. Butler, D. R. Turner, M. Whitfield & G. E. Millward, 1983. Surface areas and porosities of Fe(III)- and Fe(II)-derived oxyhydroxides. Environ. Sci. Technol. 17: 709–713.Google Scholar
  10. Davis, J. A. & J. O. Leckie, 1978. Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J. Colloid Interface Sci. 67: 90–107.Google Scholar
  11. Deurer, R., U. Förstner & G. Schmoll, 1978. Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochim. Cosmochim. Acta 42: 425–427.Google Scholar
  12. Diks, D. M. & H. E. Allen, 1983. Correlation of copper distribution in a freshwater-sediment system to bioavailability. Bull. Environm. Contam. Toxicol. 30: 37–43.Google Scholar
  13. Engler, R. M., J. M. Brannon, J. Rose & G. Bigham, 1977. A practical selective extraction procedure for sediment characterization. In Chemistry of marine sediments. T. F. Yen (ed.), Ann Arbor Sci. Publ. Inc., Ann Arbor, pp. 163–180.Google Scholar
  14. Farrah, H. & W. F. Pickering, 1979. pH effects in the adsorption of heavy metal ions by clays. Chem. Geol. 2: 317–326.Google Scholar
  15. Förstner, U., 1982. Accumulative phases for heavy metals in limnic sediments. Hydrobiologia 91: 269–284.Google Scholar
  16. Förstner, U. & G. T. W. Wittmann, 1981. Metal Pollution in the Aquatic Environment. 2nd edition, Springer-Verlag, Berlin, 486 pp.Google Scholar
  17. Gibbs, R. J., 1973. Mechanisms of trace metal transport in rivers. Science 180: 71–73.Google Scholar
  18. Gupta, S. K. & K. Y. Chen, 1975. Partitioning of trace metals in selective chemical fractions of near-shore sediments. Environ. Lett. 10: 129–158.Google Scholar
  19. Hem, J. D., 1972. Chemistry and occurrence of cadmium and zinc in surface water and groundwater. Water Resour. Res. 8: 661–679.Google Scholar
  20. Hem, J. D., 1976. Geochemical controls on lead concentrations in stream water and sediments. Geochim. Cosmochim. Acta 40: 599–609.Google Scholar
  21. Holmgren, G. S., 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Amer. Proc. 31: 210–211.Google Scholar
  22. Jackson, M. L., 1958. Soil Chemical Analysis. Prentice Hall, Engelwood Cliffs, N.J., 498 pp.Google Scholar
  23. Khalid, R. A., R. P. Gambrell & W. H. Patrick, 1981. Chemical availability of cadmium in Mississippi River sediment. J. Environ. Qual. 10: 523–528.Google Scholar
  24. Langston, W. J., 1980. Arsenic in U.K. estuarine sediments and its availability to deposit-feeding bivalves. J. Mar. Biol. Ass. U.K. 60: 869–881.Google Scholar
  25. Langston, W. J., 1982. Distribution of mercury in British estuarine sediments and its availability to deposit-feeding-bivalves. J. Mar. Biol. Ass. U.K. 62: 667–684.Google Scholar
  26. Lion, L. W., R. S. Altmann & J. O. Leckie, 1982. Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contribution of Fe/Mn oxide and organic surface coatings. Environ. Sci. Technol., 16: 660–666.Google Scholar
  27. Loganathan, P. & R. G. Burau, 1973. Sorption of heavy metal ions by a hydrous manganese oxide. Geochim. Cosmochim. Acta 37: 1277–1293.Google Scholar
  28. Luoma, S. N. & G. W. Bryan, 1978. Factors controlling the availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J. Mar. Biol. Ass. U.K. 58: 793–802.Google Scholar
  29. Luoma, S. N. & G. W. Bryan, 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuar. Coast. Shelf Sci. 15: 95–108.Google Scholar
  30. Luoma, S. N. & J. A. Davis, 1983. Requirements for modelling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12: 159–181.Google Scholar
  31. Luoma, S. N. & E. A. Jenne, 1977. The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam. In Biological implications of metals in the environment. R. E. Wildung & H. Drucker (eds.), Technical Information Center, Energy Research and Development Administration, Washington, D.C., pp. 213–230.Google Scholar
  32. Millward, G. E. & R. M. Moore, 1982. The adsorption of Cu, Mn and Zn by iron oxyhydroxide in model estuarine solutions. Water Res. 16: 981–985.Google Scholar
  33. Murray, J. E., 1975. The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta 39: 505–519.Google Scholar
  34. Oakley, S. M., P. O. Nelson & K. J. Williamson, 1981. Model of trace-metal partitioning in marine sediments. Environ. Sci. Technol. 15: 474–480.Google Scholar
  35. Patchineelam, S. R., 1975. Untersuchungen über die Hauptbindungsarten und die Mobilisierbarkeit von Schwermetallen in fluviatilen Sedimenten. Thesis, Univ. Heidelberg, 137 pp.Google Scholar
  36. Rapin, F. & U. Förstner, 1983. Sequential leaching techniques for particulate metal speciation: the selectivity of various extractants. Proceedings of the 4th International Conference on Heavy Metals in the Environment, Heidelberg, CEP Consultants Ltd., (ed.), Edinburgh, U.K., pp. 1074–1077.Google Scholar
  37. Rapin, F., A. Tessier, P. G. C. Campbell & R. Carignan, 1986. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environ. Sci. Technol. 20: 836–840.Google Scholar
  38. Rendell, P. S., G. E. Batley & A. J. Cameron, 1980. Adsorption as a control of metal concentrations in sediment extracts. Environ. Sci. Technol. 14: 314–318.Google Scholar
  39. Schindler, P. W., 1967. Heterogeneous equilibria involving oxides, hydroxides, carbonates, and hydroxide carbonates. In Equilibrium concepts in natural water systems. W. Stumm (ed.), Amer. Chem. Soc., Adv. Chem. Ser., Vol. 67, Washington, D.C. pp. 196–221.Google Scholar
  40. Schindler, P. W., 1975. Removal of trace metals from the oceans: a zero order model. Thalassia Jugoslavica 11: 101–111.Google Scholar
  41. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit sauerer Ammoniumoxalat-Lösung. Z. Pflanzenernähr. Düng. Bodenkde 105: 194–202.Google Scholar
  42. Sigg, L., W. Stumm & B. Zinder, 1984. Chemical processes at the particulate-water interface: implications concerning the form of occurrence of solute and adsorbed species. In Complexation of trace metals in natural waters. C. J. M. Kramer & J. C. Duinker (eds.), Nijhoff & Junk Publishers, The Hague, pp. 251–266.Google Scholar
  43. Stover, R. C., L. E. Sommers & D. J. Silviera, 1976. Evaluation of metals in wastewater sludges. J. Water Pollut. Contr. Fed. 48: 2165–2175.Google Scholar
  44. Swallow, K. C., D. N. Hume & F. M. M. Morel, 1980. Sorption of copper and lead by hydrous ferric oxide. Environ. Sci. Technol. 14: 1326–1331.Google Scholar
  45. Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851.Google Scholar
  46. Tessier, A., P. G. C. Campbell & J. C. Auclair, 1983. Relationships between trace metal partitioning in sediments and their bioaccumulation in freshwater pelecypods. Proceedings of the 4th International Conference on Heavy Metals in the Environment, Heidelberg, CEP Consultants Ltd., (ed.), Edinburgh, U.K., pp. 1086–1089.Google Scholar
  47. Tessier, A., P. G. C. Campbell, J. C. Auclair & M. Bisson, 1984a. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41: 1463–1472.Google Scholar
  48. Tessier, A., F. Rapin & R. Carignan, 1984b. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmochim. Acta 49: 183–194.Google Scholar
  49. Volkov, I. I. & L. S. Fominia, 1974. Influence of organic material and processes of sulphide formation on distribution of some trace elements in deep-water sediments of the Black Sea. Amer. Assoc. Pet. Geol. Mem. 20: 456–476.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • A. Tessier
    • 1
  • P. G. C. Campbell
    • 1
  1. 1.INRS-EauUniversité du QuébecSainte-FoyCanada

Personalised recommendations