Photosynthesis Research

, Volume 44, Issue 3, pp 221–242 | Cite as

The common origins of the pigments of life—early steps of chlorophyll biosynthesis

  • Yael J. Avissar
  • Patricia A. Moberg
Minireviews

Abstract

The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.

Key words

C-4 pathway C-5 pathway 5-aminolevulinate porphobilinogen hydroxymethylbilane uroporphyrinogen III chlorophyll heme pigment porphyrin tetrapyrrole 

Abbreviations

ALA

5-aminolevulinic acid

ALAS

5-aminolevulinic acid synthase

GR

glutamyl-tRNA reductase

GSA

glutamate-1-semialdehyde

GSAT

glutamate-1-semialdehyde aminotransferase

HMB

hydroxymethylbilane

PBG

porphobilinogen

PBGD

porphobilinogen deaminase

PBGS

porphobilinogen synthase

URO

uroporphyrin

URO'gen

uroporphyrinogen

US

uroporphyrinogen III synthase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud MM and Akhtar M (1976) Stereochemistry of hydrogen elimination in the enzymatic formation of the C-2-C-3 double bond of porphobilinogen J Chem Soc Chem Commun: 1007–1008Google Scholar
  2. Abboud MM and Jordan PM (1974) Biosynthesis of δ-aminolevulinic acid: Involvement of a retention reversion mechanism. J Chem Soc Chem Commun: 643–644Google Scholar
  3. Afonso SG, Chinarro S, deSalamanca RE and Battle AMdelC (1994a) δ-Aminolevulinic acid dehydratase inactivation by uroporphyrin I in light and in darkness. Int J Biochem 26: 255–258Google Scholar
  4. Afonso SG, Chinarro S, deSalamanca RE and Battle AMdelC (1994b) How the atmosphere and the presence of substrate affect the photo and nonphotoinactivation of heme enzymes by uroporphyrin I. Int J Biochem 26: 259–262Google Scholar
  5. Akhtar M (1991) Mechanism and stereochemistry of the enzymes involved in the conversion of Uroporphyrinogen III into haem. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 67–99. Elsevier Science Publishers, AmsterdamGoogle Scholar
  6. Alefounder PR, Abell C and Battersby AR (1988) The sequence of the hemC, hemD and two additional E. coli genes. Nucleic Acids Res 16: 9871Google Scholar
  7. Alwan AF, Mgbeje BI and Jordan PM (1989) Purification and properties of uroporphyrinogen III synthase (cosynthase) from an over-producing recombinant strain of Escherichia coli K-12. Biochem J 264: 397–402Google Scholar
  8. Asahara N, Murakami K, Korbrisate S, Yashimoto Y and Murooka Y (1994) Cloning and characterization of the hemA gene for synthesis of δ-aminolevulinic acid in Xanthomonas campestris pv. phaseoli. Appl Microbiol Biotechnol 40: 846–850Google Scholar
  9. Avissar YJ (1980) Biosynthesis of 5-aminolevulinate from glutamate in the cyanobacterium Anabaena variabilis. Biochim Biophys Acta 613: 220–228Google Scholar
  10. Avissar YJ (1983) 5-aminolevulinate synthesis in permeabilized filaments of the blue-green alga Anabaena variabilis. Plant Physiol 72: 200–203Google Scholar
  11. Avissar YJ and Beale SI (1988) Biosynthesis of tetrapyrrole pigment precursors: Formation and utilization of glutamyl-tRNA for δ-aminolevulinic acid synthesis by isolated enzyme fractions from Chlorella vulgaris. Plant Physiol 88: 879–886Google Scholar
  12. Avissar YJ and Beale SI (1989) Biosynthesis of tetrapyrrole pigment precursors. Pyridoxal requirement of the aminotransferase step in the formation of δ-aminolevulinate from glutamate in extracts of Chlorella vulgaris. Plant Physiol 89: 852–859Google Scholar
  13. Avissar YJ and Beale SI (1990) Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 172: 1656–1659Google Scholar
  14. Avissar YJ and Nadler KD (1978) Stimulation of tetrapyrrole formation in Rhizobium japonicum by restricted aeration. J Bacteriol 135: 782–789Google Scholar
  15. Avissar YJ, Ormerod JG and Beale SI (1989) Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151: 513–519Google Scholar
  16. Battersby AR (1994) How nature builds the pigments of life: The conquest of vitamin B12. Science 264: 1551–1557Google Scholar
  17. Battersby AR, Fookes CJR, Matcham GWJ and McDonald E (1979) Order of assembly of the four pyrrole rings during biosynthesis of the natural porphyrins. J Chem Soc Chem Commun: 539–541Google Scholar
  18. Bauer CE, Bollivar DW and Suzuki JY (1993) Genetic analyses of photopigment biosynthesis in eubacteria: A guiding light for algae and plants. J Bacteriol 175: 3919–3935Google Scholar
  19. Beale SI (1994) Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of Tetrapyrrole Pigments. Ciba Foundation Symposium 180: 156–171 Wiley & Sons, ChichesterGoogle Scholar
  20. Beale SI (1995) Biosynthesis and structures of hemes and porphyrins (in press). In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, DordrechtGoogle Scholar
  21. Beale SI and Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol 53: 297–303Google Scholar
  22. Beale SI and Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls, pp 287–391. McGraw Hill, New YorkGoogle Scholar
  23. Beale SI and Weinstein JD (1991) Biochemistry and regulation of photosynthetic pigment formation in green plants and algae. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 155–235. Elsevier Science Publishers, AmsterdamGoogle Scholar
  24. Beale SI, Gough SP and Granick S (1975) The biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Nat Acad Sci USA 72: 2719–2723Google Scholar
  25. Beale SI, Foley T and Dzelzkalns V (1981) δ-Aminolevulinic acid synthase from Euglena gracilis. Proc Natl Acad Sci USA 78: 1666–1669Google Scholar
  26. Berry-Lowe SL, Grimm B, Smith MA and Kannangara CG (1992) Purification and characterization of glutamate 1-semialdehyde aminotransferase from barley expressed in Escherichia coli. Plant Physiol 99: 1597–1603Google Scholar
  27. Biel SW, Wright MS and Biel AJ (1988) Cloning of the Rhodobacter capsulatus hemA gene. J Bacteriol 170: 4382–4384Google Scholar
  28. Bishop DF, Devey KR, McBride L and Desnick RJ (1981) Rapid determination of δ-aminolevulinate synthase activity by a specifiic fluorometric coupled enzyme assay. Anal Biochem 113: 68–78Google Scholar
  29. Boese QF, Spano AJ, Li J and Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem 266: 17060–17066Google Scholar
  30. Bogorad L (1958) The enzymic synthesis of porphyrins from porphobilinogen. II. Uroporphyrin III. J Biol Chem 233: 510–515Google Scholar
  31. Brockl G, Berchtold M, Behr K and Konig H (1992) Sequence of the 5-aminolevulinic acid dehydratase-encoding gene from the hyperthermophilic methanogen, Methanothemus sociabilis. Gene 119: 151–152Google Scholar
  32. Brumm PJ and Friedmann HC (1981) Succinylacetone pyrrole, a powerful inhibitor of vitamin B12 biosynthesis. Effect on δ-aminolevulinic acid dehydratase. Biochim Biophys Res Commun 102: 854–859Google Scholar
  33. Bull AD, Breu V, Kannangara CG, Rogers LJ and Smith AJ (1990) Cyanobacterial glutamate 1-semialdehyde aminotransferase. Requirement for pyridoxamine phosphate. Arch Microbiol 154: 56–59Google Scholar
  34. Burnham BF and Lascelles J (1963) Control of porphyrin biosynthesis through a negative feedback mechanism. Studies with preparations of δ-aminolaevulate and δ-aminolaevulate dehydratase from Rhodopseudomonas sphaeroides. Biochem J 87: 462–472Google Scholar
  35. Burton G, Fagerness PE, Hosozawa S, Jordan PM and Scott AI (1979) 13C NMR evidence of a new intermediate, preuroporphyrinogen, in the enzymatic transformation of porphobilinogen into uroporhyrinogen III. J Chem Soc Chem Commun 1979: 202–204Google Scholar
  36. Castelfranco PA and Beale SI (1983) Chlorophyll biosynthesis: Recent advances and areas of current interest. Ann Rev Plant Physiol 34: 241–278Google Scholar
  37. Castelfranco PA and Jones OTG (1975) Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol 55: 485–490Google Scholar
  38. Castelfranco PA, Rich PM and Beale SI (1974) The abolition of lag phase in greening cucumber cotelydons by exogenous δ-aminolevulinic acid. Plant Physiol 53: 615–618Google Scholar
  39. Castelfranco PA, Thayer SS, Wilkinson JQ and Bonner BA (1988) Labeling of porphobilinogen deaminase by radioactive 5-aminolevulinic acid in isolated developing pea chloroplasts. Arch Biochem Biophys 266: 219–226Google Scholar
  40. Castelfranco PA, Walker CJ and Weinstein JD (1994) Biosynthetic studies on chlorophyllls: from protoporphyrin IX to protochlorophyllide. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180: 194–209. Wiley & Sons, ChichesterGoogle Scholar
  41. Chauhan S and O'Brian MR (1993) Bradyrhizobium japonicum δ-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. J Bacteriol 175: 7222–7227Google Scholar
  42. Chen MW, Jahn D, Schön A, O'Neil GP and Söll D (1990) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058–4063Google Scholar
  43. Chen W, Russell CS, Murooka Y and Cosloy SD (1994) 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA. J Bacteriol 176: 2743–2746Google Scholar
  44. Chereskin BA and Castelfranco PA (1982) Effects of iron and oxygen on chlorophyll biosynthesis. II. Observations on the biosynthetic pathway in isolated etioplasts. Plant Physiol 69: 112–116Google Scholar
  45. Chisholm JJ (1971) Lead poisoning. Sci Am 224: 15–23Google Scholar
  46. Darweesh MM (1992) Effects of gabaculine on 5-aminolevulinic acid dehydratase during development of bean chloroplasts. Plant Sci 87: 123–132Google Scholar
  47. Dean C, Tamaki S, Dunsmuir P, Favreau M, Katayama C, Dooner H and Bedrook J (1986) mRNA transcripts of several plant genes are polyadenylated at multiple sites in vivo. Nucleic Acids Res 14: 2229–2240Google Scholar
  48. Dörnemann (1992) New aspects of the intermediates, catalytic components and the regulation of the C-5 pathway to chlorophyll. In: Argyroudi-Akoyunoglou JH (ed) Regulation of Chloroplast Biogenesis, pp 175–181. Plenum Press, New YorkGoogle Scholar
  49. Drolet M, Peloquin L, Echelard Y, Cousineau L and Sasarman A (1989) Isolation and nucleotide sequence of the hemA gene of Escherichia coli K-12. Mol Gen Genet 216: 347–352Google Scholar
  50. Echelard Y, Dymetryszyn J, Drolet M and Sasarman A (1988) Nucleotide sequence of the hemB gene of Escherichia coli K-12. Mol Gen Genet 214: 503–508Google Scholar
  51. Einav M and Avissar YJ (1984) The biosynthesis of 5-aminolevulinate from glutamate in the blue-green alga Spirulina platensis. Plant Sci Lett 35: 51–54Google Scholar
  52. Elliott T (1989) Cloning, gene characterization and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J Bacteriol 171: 3948–3960Google Scholar
  53. Elliott T, Avissar YJ, Rhie G and Beale SI (1990) Cloning and sequence of the hemL gene from Salmonella typhimurium and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 172: 7071–7084Google Scholar
  54. Etlinger JD, Li SX, Guo GG and Li N (1994) Phosphorylation and ubiquitination of the 26S proteasome complex. Enz Prot 47: 325–329Google Scholar
  55. Franzén LG (1994) Analysis of chloroplast and mitochondrial targeting sequences from the green alga Chlamydomonas reinhardtii. Biol Membr 11: 304–309Google Scholar
  56. Friedman HC and Thauer RK (1992) Macrocyclic tetrapyrrole biosynthesis in bacteria. In: Encyclopedia of Microbiology, Vol 3, 1–19. Academic Press, New YorkGoogle Scholar
  57. Friedman HC, Duban ME, Valasinas A and Frydman B (1992) The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of δ-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185: 60–68Google Scholar
  58. Fuhrhop JH and Smith KM (1975) Laboratory methods. In: Smith KM (ed) Porphyrins and Metalloporphyrins, pp 757–869. Elsevier Scientific Publishing Company, New YorkGoogle Scholar
  59. Gardner G, Gorton HL and Brown SA (1988) Inhibition of phytochrome synthesis by the transaminase inhibitor, 4-amino-5-fluoropentanoic acid. Plant Physiol 87: 8–10Google Scholar
  60. Gibbs PNB and Jordan PM (1986) Identification of a lysine at the active site of human 5-aminolevulinate dehydratase. Biochem J 236: 447–451Google Scholar
  61. Gibson KD, Laver WG and Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. The formation of δ-aminolevulinic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J 70: 71–81Google Scholar
  62. Gilmartin PM, Sarokin L, Memelink J and Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2: 369–378Google Scholar
  63. Gober JW and Kashket ER (1987) K+ regulates bacteriod associated functions of Bradyrhizobium. Proc Natl Acad Sci USA 84: 4650–4654Google Scholar
  64. Gough SP and Kannangara CG (1979) Biosynthesis of δ-aminolevulinate in greening barley leaves. III. The formation of δ-aminolevulinate in tigrina mutants of barley. Carlsberg Res Commun 44: 403–416Google Scholar
  65. Gough SP, Kannangara CG and Bock K (1989) A new method for the synthesis of glutamate-1-semialdehyde. Characterization of its structure in solution by NMR. Carlsberg Res Commun 54: 99–108Google Scholar
  66. Gough SP, Kannangara CG and von Wettstein D (1992) Glutamate-1-semialdehyde aminotransferase as a target for herbicides. In: Boger P Sandmann G (eds) Target Assays for Modern Herbicides and Related Phytotoxic Compounds, pp 21–27. Lewis Publishers, ChelseaGoogle Scholar
  67. Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V and Vogel HJ (eds) Evolving Genes and Proteins, pp 67–88. Academic Press, New YorkGoogle Scholar
  68. Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci USA 87: 4169–4173Google Scholar
  69. Grimm B (1992) Identification of a hemA gene from Synechocystis by complementation of an E. coli hemA mutant. Hereditas 117: 195–197Google Scholar
  70. Grimm B, Bull A, Welinder KG, Gough SP and Kannangara CG (1989) Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54: 67–79Google Scholar
  71. Grimm B, Bull A and Breu V (1991) Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli. Mol Gen Genet 225: 1–10Google Scholar
  72. Grimm B, Smith MA and von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate 1-semialdehyde aminotransferase. Eur J Biochem 206: 579–585Google Scholar
  73. Guo GG, Gu M and Etlinger JD (1994) 240-kDa proteasome inhibitor (CF-2) is identical to δ-aminolevulinic acid dehydratase. J Biol Chem 269: 12399–12402Google Scholar
  74. Hansson M (1994) Tetrapyrrole synthesis in Bacillus subtilis. PhD Thesis, Lund University, LundGoogle Scholar
  75. Hansson M, Ruthberg L, Schröder I and Hederstedt L (1991) The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 173: 2590–2599Google Scholar
  76. Harel E, Lea PJ, Meller E and Ne'eman E (1981) Alternative routes for the synthesis of 5-aminolevulinic acid in greening leaves-double labeling with 13N and 14C-glutamate. In: Akoyunoglou A (ed) Photosynthesis, Vol V, Chloroplast Development, pp 45–106. Balaban International Science Services, PhiladelphiaGoogle Scholar
  77. Hart GJ and Battersby AR (1985) Purification and properties of uroporphyrinogen III synthase (co-synthase) from Euglena gracilis. Biochem J 232: 151–160Google Scholar
  78. Hart GJ, Abell C and Battersby AR (1986) Purification, N-terminal amino acid sequence and properties of hydroxymethylbilane synthase (porphobilinogen deaminase) from Escherichia coli. Biochem J 240: 273–276Google Scholar
  79. Hart GJ, Miller AD, Leeper FJ, and Battersby AR (1987) Biosynthesis of natural porphyrins. Proof that hydroxymethylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun: 1762–1765Google Scholar
  80. Hennig M, Grimm B, Jenny M, Müller R and Jansonius JN (1994) Crystallization and preliminary X-ray analysis of wild type and K272A, mutant glutamate 1-semialdehyde aminotransferase from Synechococcus. J Mol Biol 242: 591–594Google Scholar
  81. Higuchi M and Bogorad L (1975) The purification and properties of uroporphyrinogen I synthases and uroporphyrinogen III cosynthase. Interactions between the enzymes. Ann N Y Acad Sci 244: 401–418Google Scholar
  82. Höfen R, Axelsen KB, Kannangara CG, Schüttke I, Pohlenz HD, Willmitzer L, Grimm B and von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: Inhibition of chlorophyll biosynthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91: 1726–1730Google Scholar
  83. Hoober JK, Kahn A, Ash DE, Gough SP and Kannangara GC (1988) Biosynthesis of δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glulamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 53: 11–25Google Scholar
  84. Hornberger U, Liebetanz R, Tichy HV and Drews G (1990) Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a δ-aminolevulinic-acid-dependent strain. Mol Gen Genet 221: 371–378Google Scholar
  85. Horowitz NH (1945) On the evolution of biochemical syntheses. Proc Natl Acad Sci USA 31: 153–157Google Scholar
  86. Huang I and Castelfranco PA (1989) Regulation of 5-aminolevulinic acid synthhesis in developing chloroplasts. I. Effect of light/dark treatments in vivo and in organello. Plant Physiol 90: 996–1002Google Scholar
  87. Huang I and Castelfranco PA (1990) Regulation of 5-aminolevulinic acid synthesis in developing chloroplasts. III. Evidence for functional heterogeneity of the ALA pool. Plant Physiol 92: 172–178Google Scholar
  88. Huang I and Wang W (1986) Genetic control of chlorophyll biosynthesis: Regulation of delta aminolevulinate synthesis in Chlamydomonas. Mol Gen Genet 205: 217–220Google Scholar
  89. Huang L, Bonner BA and Castelfranco PA (1989) Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. II. Regulation of ALA synthesizing capacity by phytochrome. Plant Physiol 90: 1003–1008Google Scholar
  90. Hungerer C, Troup B, Römling U and Jahn D (1995) Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol (in press)Google Scholar
  91. Ikemi M, Murakami K, Hashimoto M and Murooka Y (1992) Cloning and characterization of genes involved in the biosynthesis of δ-aminolevulinic acid in Escherichia coli. Gene 121: 127–132Google Scholar
  92. Ilag LL and Jahn D (1992) Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochem 31: 7143–7151Google Scholar
  93. Ilag LL, Jahn D, Eggertson G and Söll D (1991) The Escherichia coli hemL gene encodes glutamate-1-semialdehyde aminotransferase. J Bacteriol 173: 3408–3413Google Scholar
  94. Ilag LL, Kumar M and Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265–275Google Scholar
  95. Jaffe EK (1993) Predicting the Zn(II) ligands in metalloproteins: Case study, porphobilinogen synthase. Comments Inorg Chem 15: 67–92Google Scholar
  96. Jaffe EK, Salowe SP, Chen NT and DeHaven PA (1984) Porphobilinogen synthase modification with methylmethanethiosulfonate. A protocol for the investigation of metalloproteins. J Biol Chem 259: 5032–5036Google Scholar
  97. Jaffe E, Abrams WR, Kaempfen HX and Harris KAJr (1992) 5-chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinc. Biochem 31: 2113–2123Google Scholar
  98. Jaffe EK, Volin M and Myers CB (1994) 5-Chloro[1,4–13C]levulinic acid modification of mammalian and bacterial porphobilinogen synthase suggests an active site containing two Zn(II). Biochem 33: 11554–11562Google Scholar
  99. Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314: 77–80Google Scholar
  100. Jahn D, Michelsen U and Söll D (1991) Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 262: 2542–2548Google Scholar
  101. Jahn D, O'Neill GP, Verkamp E and Söll D (1992a) Glutamate tRNA: Involvement in protein synthesis and aminolevulinate formation in Chlamydomonas reinhardtii. Plant Physiol Biochem 30: 245–253Google Scholar
  102. Jahn D, Verkamp E and Söll D (1992b) Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17: 215–218Google Scholar
  103. Javor GT and Febre EF (1992) The enzymatic basis of thiol stimulated secretion of porphyrins in Escherichia coli. J Bacteriol 174: 1072–1075Google Scholar
  104. Johanningmeier U and Howell SH (1984) Regulation af light-harvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardtii. Possible involvement of chlorophyll synthesis precursors. J Biol Chem 259: 13541–13549Google Scholar
  105. Jones RM and Jordan PM (1994) Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochem J 299: 895–902Google Scholar
  106. Jones MC, Jenkins JM, Smith AG and Howe CJ (1994) Cloning and characterization of the genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Molec Biol 24: 435–448Google Scholar
  107. Jordan PM (1990) Biosynthesis of δ-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls, pp 287–391. McGraw Hill, New YorkGoogle Scholar
  108. Jordan PM (1991) The biosynthesis of 5-aminolevulinic acid and its transformation into uroporphyrinogen III. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 1–66. Elsevier Science Publishers. AmsterdamGoogle Scholar
  109. Jordan PM (1994) Highlights in haem biosynthesis. Curr Opinion Struct Biol 4: 902–911Google Scholar
  110. Jordan PM and Mgbeje BIA (1991) The genes of tetrapyrrole biosynthesis. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 257–294. Elsevier Science Publishers, AmsterdamGoogle Scholar
  111. Jordan PM and Seehra JS (1979) The biosynthesis of uroporphyrinogen. III. Order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104: 364–366Google Scholar
  112. Jordan PM and Seehra JS (1980) Mechanism of action of 5-aminolevulinic acid dehydratase. Stepwise order of addition of the two molecules of 5-aminolevulinic acid in the enzymic synthesis of porphobilinogen. J Chem Soc Chem Commun: 240–242Google Scholar
  113. Jordan PM and Shemin D (1973) Purification and properties of uroporphyrinogen I synthase from Rhodopseudomonas spheroides. J Biol Chem 248: 1019–1024Google Scholar
  114. Jordan PM and Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225: 87–92Google Scholar
  115. Jordan PM and Woodcock SC (1991) Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that effects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation. Biochem J 280: 445–449Google Scholar
  116. Jordan PM, Mgbeje BIA, Alwan AF and Thomas SD (1987) Nucleotide sequence of hemD, the second gene in the hem operon of Escherichia coli K-12. Nucleic Acids Res 24: 15083Google Scholar
  117. Jordan PM, Mgbeje BIA, Thomas SD and Alwan AF (1988a) Nucleotide sequence for the hemD gene of Escherichia coli encoding uropor-phyrinogen III synthase and initial evidence for a hem operon. Biochem J 249: 613–616Google Scholar
  118. Jordan PM, Thomas SD and Warren MJ (1988b) Purification, crystallization and properties of porphobilinogen deaminase from a recombinant strain of Escherichia coli K12. Biochem J 254: 427–435Google Scholar
  119. Jordan PM, Cheung KM, Sharma RP and Warren MJ (1993) 5-Amino-6-hydroxy-3,4,5,6-tetrahydropyran-2-one (HAT). A stable cyclic form of glutamate 1-semialdehyde, the natural precursor for tetrapyrroles. Tet Lett 34: 1177–1180Google Scholar
  120. Kaczor CM, Smith MW, Sangwan I and O'Brian MR (1994) Plant δ-aminolevulinic acid dehydratase. Expression in soy bean root nodules and evidence for a bacterial lineage of the Alad gene. Plant Physiol 104: 1411–1417Google Scholar
  121. Kannangara CG and Schouboe A (1985) Biosynthesis of δ-aminolevulinate in greening barley leaves. VII. Glutamate-1-semialdehyde accumulation in gabaculine treated leaves. Carlsberg Res Commun 50: 179–191Google Scholar
  122. Kannangara CG, Gough SP, Oliver RP and Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res Commun 49: 417–437Google Scholar
  123. Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A and von Wettstein D (1988) tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci 13: 139–143Google Scholar
  124. Kannangara CG, Andersen RV, Pontoppidan B, Willows R and von Wettstein D (1994) Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolaevulinate. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180: 3–25. Wiley & Sons, ChichesterGoogle Scholar
  125. Kikuchi G, Kumar A, Talmage P and Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233: 1214–1219Google Scholar
  126. Kipe-Nolt JA and StevensJr SE (1980) Biosynthesis of δ-aminolevulinic acid from glutamate in Agmellum quadruplicatum. Plant Physiol 65: 126–128Google Scholar
  127. Kotler ML, Fumagalli SA, Juknat AA and Battle AM (1987) Porphyrin biosynthesis in Rhodopseudomonas palustris. VIII. Purification and properties of deaminase. Comp Biochem Physiol 87B: 601–606Google Scholar
  128. Lander M, Pitt AR, Alefounder PR, Bardy D, Abell C and Battersby AR (1991) Studies on the mechanism of hydroxymethylbilane synthase concerning the role of arginine residues in substrate binding. Biochem J 275: 447–452Google Scholar
  129. Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK an Sistrom WF (eds) The Photosynthetic Bacteria, pp 795–808. Plenum Press, New YorkGoogle Scholar
  130. Laycock MV and Wright JCC (1981) The biosynthesis of phycocyanobilin in Anacystis nidulans. Phytochem 20: 1265–1268Google Scholar
  131. Leeper FJ (1994) The evidence for the spirocyclic intermediate in the formation of uroporphyrinogen III by cosynthase. In: Chadwick DI and Ackrill K (eds) The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180: 111–130. Wiley & Sons, ChichesterGoogle Scholar
  132. Leong SA, Williams PH and Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for 5-aminolevulinic acid synthase from Rhizobium meliloti Nucleic Acids Res 53: 5965–5976Google Scholar
  133. Li J, Umanoff H, Proenca R, Russel CS and Cosloy SD (1988) Cloning of the Escherichia coli K-12 hemB gene. J Bacteriol 170: 1021–1025Google Scholar
  134. Li J, Brathwaite O, Cosloy SD, and Russell CS (1989a) 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171: 2547–2552Google Scholar
  135. Li J, Russell CS and Cosloy SD (1989b) Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82: 209–217Google Scholar
  136. Li J, Russel CS and Cosloy SD (1989c) The structure of the Escherichia coli hemB gene. Gene 75: 177–184Google Scholar
  137. Liedgens W, Gützmann R and Schneider HAW (1980) Highly efficient purification of the labile plant enzyme 5-aminolevulinate dehydratase (EC 4.2.1.24) by means of monoclonal antibodies. Z Naturforsch 35c: 958–962Google Scholar
  138. Liedgens W, Lütz C and Schneider HAW (1983) Molecular properties of 5-aminolevulinic acid dehydratase from Spinacia oleracea. Eur J Biochem 135: 75–79Google Scholar
  139. Lim SH, Witty M, Wallace-Cook ADM, Ilag LL and Smith AG (1994) Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thariana and is targeted to the chloroplasts. Plant Mol Biol 26: 863–872Google Scholar
  140. Little HN and Jones OTG (1976) The subcellular localization and properties of ferrochelatase in etiolated barley. Biochem J 156: 309–314Google Scholar
  141. Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC and Jordan PM (1992) Structure of porphobilinogen deaminase reveals a flexible multidomain polimerase with a single catalytic site. Nature 359: 33–39Google Scholar
  142. Majumdar D, Avissar YJ, Wyche JH and Beale SI (1991): Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 156: 281–289Google Scholar
  143. Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate-1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617–629Google Scholar
  144. Matters GL and Beale SI (1995) Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme δ-aminolevulinic acid dehydratase (porphobilinogen synthase), Plant Molec Biol (in press)Google Scholar
  145. Mau YL and Wang W (1988) Biosynthesis of δ-aminolevulinic acid in Chlamydomonas reinhardtii. Study of the transamination mechanism using specifically labeled glutamate. Plant Physiol 86: 793–797Google Scholar
  146. Mauzerall D and Granick S (1956) The occurence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219: 435–445Google Scholar
  147. Mayer SM and Beale SI (1990) Light regulaticin of δ-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol 94: 1365–1375Google Scholar
  148. Mayer SM, Gawlita E, Avissar YJ, Anderson VE and Beale SI (1993) Intermolecular nitrogen transfer in the enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Plant Physiol 101: 1029–1038Google Scholar
  149. Mayer SM, Rieble S and Beale SI (1994) Metal requirements of the enzymes catalyzing conversion of glutamate to δ-aminolevulinic acid in extracts of Chlorella vulgaris and Synechocystis sp. PCC 6803. Arch Biochem Biophys 312: 203–209Google Scholar
  150. McClung CR, Sommerville JE, Guerinot ML and Chelm BK (1987) Structure of the Bradyrhizobium japonicum hemA gene encoding 5-aminolevulinic acid synthase. Gene 54: 133–139Google Scholar
  151. Meller E and Harel E (1978) The pathway of 5-aminolevulinic acid synthesis in Chlorella vulgaris and Fremyella diplosiphon. In: Akoyunoglou G and Argyroudi-Akoyunoglou JH (eds) Chloroplast Development, pp 51–67. Elsevier Science Publishers, AmsterdamGoogle Scholar
  152. Meller E, Belkin S and Harel E (1975) The biosynthesis of δ-aminolevulinic acid in greening maize leaves. Phytochem 14: 2399–2402Google Scholar
  153. Mitchell LW and Jaffe EJ (1993) Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys 300: 169–177Google Scholar
  154. Moberg PA and Avissar YJ (1994) A gene cluster in Chlorobium vibrioforme encoding the first enzymes of chlorophyll biosynthesis. Photosynth Res 41: 253–259Google Scholar
  155. Mohr CD, Sonsteby SK and Deretic V (1994) The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgD. Mol Gen Genet 242: 177–184Google Scholar
  156. Murakami K, Hashimoto Y and Murooka Y (1993a) Cloning and characterization of the gene encoding glutamate-1-semialdehyde 2,1-aminomutase, which is involved in δ-aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl Env Microbiol 59: 347–350Google Scholar
  157. Murakami K, Korbrisate S, Asahara N, Hashimoto Y and Murooka Y (1993b) Cloning and characterization of the glutamate-1-semialdehyde aminomutase gene from Xanthomonas campestris pv. phaseoli. Appl Microbiol Biotechnol 38: 502–506Google Scholar
  158. Nadler KD and Avissar YJ (1977) Heme synthesis in soybean root nodules. On the role of bacteroid δ-aminolevulinic acid synthase and δ-aminolevulinic acid dehydratase in the synthesis of the heme of leghemoglobin. Plant Physiol 60: 433–436Google Scholar
  159. Nadler KD and Granick S (1970) Controls of chlorophyll synthesis in barley. Plant Physiol 46: 240–246Google Scholar
  160. Nandi DL and Shemin D (1968a) δ-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. I. Isolation and properties. J Biol Chem 243: 1224–1230Google Scholar
  161. Nandi DL and Shemin D (1968b) δ-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. I. Isolation and properties. J Biol Chem 243: 1224–1230Google Scholar
  162. Nandi DL and Shermin D (1968b) δ-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. III. Mechanism of prophobilinogen synthesis. J Biol Chem 243: 1236–1242Google Scholar
  163. Nandi DL and Shemin D (1973) δ-aminolevulinic acid dehydratase of Rhodopseudomonas capsulata. I. Isolation and properties. Arch Biochem Biophys 158: 305–311Google Scholar
  164. Neidle EI and Kaplan S (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175: 2292–2303Google Scholar
  165. Oh-hama T, Seto H and Miyachi S (1982) 13C-NMR evidence for the pathway of chlorophyll biosynthesis in green algae. Biochem Biophys Res Commun 105: 647–652Google Scholar
  166. Oh-hama T, Seto H and Miyachi S (1986a) 13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in Chromatium. Arch Biochem Biophys 246: 192–198Google Scholar
  167. Oh-hama T, Seto H and Miyachi S (1986b) 13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in the green sulfur bacterium Prosthecochloris. Eur J Biochem 159: 189–194Google Scholar
  168. Oh-hama T, Stolowich NJ and Scott AI (1993) 5-Aminolevulinic acid biosynthesis in Propionibacterium shermanii and Halobacterium salinarium. Distribution of the two pathways of 5-aminolevulinic acid biosynthesis in prokaryotes. J Gen Appl Microbiol 39: 513–519Google Scholar
  169. O'Neill GP and Söll D (1990) Transfer RNA and the formation of the heme and chlorophyll precursor 5-aminolevulinic acid. BioFactors 2: 227–235Google Scholar
  170. Page KM, Connolly EL and Guerinot ML (1994) Effect of iron availability on expression of the Bradyrhizobium japonicum hemA gene. J Bacteriol 176: 1535–1538Google Scholar
  171. Petricek D, Rutberg L, Schröder I and Hederstedt L (1990) Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 172: 2250–2258Google Scholar
  172. Philipp-Dormston WK, Doss M (1975) Over-production of porphyrins and heme in heterotrophic bacteria. Z Naturforsch 30c: 425–426Google Scholar
  173. Pontoppidan B and Kannangara GC (1994) Purification and partial characterization of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Bioochem 225: 529–537Google Scholar
  174. Pugh CE, Harwood JL and John RA (1992) Mechanism of glutamate semialdehyde aminotransferase. Roles of diamino- and dioxo-intermediates in the synthesis of aminolevulinate. J Biol Chem 267: 1584–1588Google Scholar
  175. Rimington C (1959) Spectral-absorption coefficients of some porphyrins in the Soret-band region. Biochem J 75: 620–623Google Scholar
  176. Sangwan I and O'Brian MR (1993) Expression of the soybean (Glycine max) glutamate-1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol 102: 829–834Google Scholar
  177. Sâsârman A and Desrochers M (1976) Uroporphyrinogen III cosynthase-deficient mutants of Salmonella typhimurium LT2. J Bacteriol 128: 717–721Google Scholar
  178. Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M and Goyer C (1987) Molecular cloning and sequencing of the hemD gene of Escherichia coli K-12 and preliminary data on the Uro operon. J Bacteriol 169: 4257–4262Google Scholar
  179. Sassa S and Kappas A (1983) Hereditary tyrosinemia and the heme biosynthetic pathway. Profound inhibition of δ-aminolevulinic acid dehydratase activity by succinylacetone. J Clin Invest 71: 625–634Google Scholar
  180. Schaumburg A, Schneider-Poetsch HAW and Eckerskorn C (1992) Characterization of plastid 5-aminolevulinate dehydratase (ALAD; EC4.2.1.24) from spinach (Spinacia oleracea L.) by sequencing and comparison with non-plant ALAD enzymes. Z Naturforsch 47c: 77–84Google Scholar
  181. Schneegurt MA, Rieble S and Beale SI (1988) The tRNA required for in vitro δ-aminolevulinic acid formation from glutamate in Synechocystis extracts. Determination of activity in a Synechocystis in vitro protein synthesizing system. Plant Physiol 88: 1958–1966Google Scholar
  182. Schröder I, Johansson P, Ruthberg L and Hederstedt I. (1994) The hemX gene of the Bacillus subtilis hemAXLDBL operon encodes a membrane protein, negatively affecting the steady-state cellular concentration of HemA (glutamyl-tRNA reductase). Microbiology 140: 731–740Google Scholar
  183. Schneider HAW (1970) Anreicherung und eigenschaften von δ-aminolevulinat-dehydratase aus spinat (Spinacia oleracea). Z Pflanzenphysiol 62: 328–342Google Scholar
  184. Scott AI, Roessner CA, Stolowich NJ, Karuso P, Williams HJ, Grant SK, Gonzales MD, and Hoshino T (1988) Site-directed mutagenesis and high resolution NMR spectroscopy of the active site of porphobilinogen deaiminase. Biochemistry 27: 7984–7990Google Scholar
  185. Senge O (1993) Recent advances in the biosynthesis and chemistry of chlorophylls. Photochem Photobiol 57: 189–206Google Scholar
  186. Sharif AL, Smith AG and Abell C (1989) Isolation and characterization of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur J Biochem 184: 353–359Google Scholar
  187. Shemin D and Rittenberg D (1945) The utilization of glycine for the synthesis of a porphyrin. J Biol Chem 159: 567–568Google Scholar
  188. Shemin D, Russell CS and Abramsky T (1955) The succinate-glycine cycle. I. The mechanism of pyrrole synthesis. J Biol Chem 215: 613–626Google Scholar
  189. Shetty AS and Miller GW (1969) Purification and properties of δ-aminolaevulate dehydratase from Nicotiana tabacum L. Biochem J 114: 331–337Google Scholar
  190. Shibata H and Ochiai H (1977) Purification and properties of δ-aminolevulinic acid dehydratase from radish cotelydons. Plant Cell Physiol 18: 421–429Google Scholar
  191. Shioi Y and Doi M (1988) Characterization of porphobilinogen synthase from an aerobic photosynthetic bacterium Erythrobacter sp. strain OCh114. Plant Cell Physiol 29: 843–848Google Scholar
  192. Sisler EC and Klein WH (1963) The effect of age and various chemicals on the lag phase of chlorophyll synthesis in dark grown bean seedlings. Physiol Plant 16: 315–322Google Scholar
  193. Smith AG (1988) Subcellular localization of two porphyrinsynthesis enzymes in Pisum sativum (pea) and Arum (Cuckoopint) species. Biochem J 249: 423–428Google Scholar
  194. Smith MA, Kannangara CG and Grimm B (1992) Glutamate-1-semialdehyde aminotransferase: Anomalous enantiomeric reaction and enzyme mechanism. Biochem 31: 11249–11254Google Scholar
  195. Spencer P and Jordan PM (1993) Purification and characterization of 5-aminolevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem J 290: 279–287Google Scholar
  196. Spencer P and Jordan PM (1994) Investigation of the nature of the two metal binding sites in 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem J 300: 373–381Google Scholar
  197. Spencer P and Jordan PM (1995) Characterization of the two 5-aminolaevulinic acid binding sites of 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem J 305: 151–158Google Scholar
  198. Srere P (1994) Complexities of metabolic regulation. Trends Biochem Sci 19: 519–520Google Scholar
  199. Stamford NPJ (1994) Genetics and enzymology of the B12 pathway. In: Chadwick DJ and Ackrill K (eds) The Biosythesis of Tetrapyrrole Pigments. Ciba Foundation Symposium 180: 247–266. Wiley & Sons, ChichesterGoogle Scholar
  200. Stange-Thomann N, Thomann HU, Lloyd AJ, Lyman H and Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAGlu uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci USA 91: 7947–7951Google Scholar
  201. Tai T, Moore MD and Kaplan S (1988) Cloning and characterization of the 5-aminolaevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70: 139–151Google Scholar
  202. Tait GM (1973) Aminolaevulinate synthase of Micrococcus denitrificans. Biochem J 131: 389–403Google Scholar
  203. Tamai H, Shioi Y and Sasa T (1979) Purification and characterization of δ-aminolevulinic acid dehydratase from Chlorella regularis. Plant Cell Physiol 20: 435–444Google Scholar
  204. Tchuinmogne SJ, Huault C, Aones A and Balangé AP (1989) Inhibitory effect of gabaculine on 5-aminolevulinate dehydratase activity in radish seedlings. Plant Physiol 90: 1293–1297Google Scholar
  205. Tchuinmogne SJ, Bruyant P and Balangé AP (1992) Immunological characterization of two 5-aminolevulinate dehydratases in radish leaves. Plant Physiol Biochem 30: 255–261Google Scholar
  206. Thomas SD and Jordan PM (1986) Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K-12. Nucleic Acids Res 14: 6215–6226Google Scholar
  207. Tigier HA, Battle AMdelC and Locascio G (1968) Porphyrin biosynthesis in soybean callus tissue system. Isolation, purification and general properties of δ-aminolevulinate dehydratase. Biochim Biophys Acta 151: 300–302Google Scholar
  208. Umanoff H, Russel CS and Cosloy SD (1988) Availability of porphobilinogen controls appearance of porphobilinogen deaminase activity in Escherichia coli K12. J Bacteriol 170: 4969–4971Google Scholar
  209. Urata G and Granick S (1963) Biosynthesis of α-aminoketones and the metabolism of aminoacetone. Biol Chem 238: 811–820Google Scholar
  210. Van Heyningen S and Shemin D (1971) Quaternary structure of δ-aminolevulinic acid dehydratase from Rhodopseudomonas sphaeroides. Biochemistry 10: 4676–4682Google Scholar
  211. Verkamp E and Chelm BK (1989) Isolation, nucleotide sequence and preliminary characterization of the Escherichia coli K-12 hemA gene. J Bacteriol 171: 4728–4735Google Scholar
  212. Verkamp E, Jahn D, Kumar AM and Söll D (1992) Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. J Biol Chem 267: 8275–8280Google Scholar
  213. Wang W, Gough SP and Kannangara CG (1981) Biosynthesis of δ-aminolevulinate in greening barley leaves. Carlsberg Res Commun 46: 243–257Google Scholar
  214. Wang W, Huang D, Stachon D, Gough SP and Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown cells. Plant Physiol 74: 569–575Google Scholar
  215. Warnick GR and Burnham BF (1971) Regulation of porphyrin biosynthesis: Purification and characterization of δ-aminolevulinic acid synthase. J Biol Chem 246: 6880–6885Google Scholar
  216. Warren MJ and Jordan PM (1988) Investigation into the nature of substrate binding to the dipyrromethane cofactor in Escherichia coli porphobilinogen deaminase. Biochem 27: 9020–9030Google Scholar
  217. Warren MJ, Bolt E and Woodcock SC (1994) 5-aminolaevulinic acid synthase and uroporphyrinogen methylase: Two key control enzymes of tetrapyrrole biosynthesis and modification. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180: 26–49. Wiley & Sons, ChichesterGoogle Scholar
  218. Weinstein JD and Beale SI (1983) Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem 258: 6799–6807Google Scholar
  219. Weinstein JD and Beale SI (1985) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga Chlorella vulgaris. Arch Biochem Biophys 237: 454–464Google Scholar
  220. Weinstein JD, Mayer SM and Beale SI (1987) Formation of δ-aminolevulinic acid from glutamic acid in algal extracts. Separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 244–250Google Scholar
  221. Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM and Beale SI (1993) Heme inhibition of δ-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101: 657–665Google Scholar
  222. Williams DC, Morgan GS, McDonald E and Battersby AR (1981) Purification of porphobilinogen deaminase from Euglena gracilis and studies of its kinetics. Biochem J 193: 301–310Google Scholar
  223. Witty M, Wallace-Cook ADM, Albrecht H, Spano AJ, Michel H, Shabanowitx J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) Isolated by redundant polymerase chain reaction. Plant Physiol 103: 139–147Google Scholar
  224. Woese CR (1987) Bacterial Evolution. Microbiol Rev 51: 221–271Google Scholar
  225. Woodcock SC and Jordan PM (1994) Evidence for the participation of aspartate-84 as a catalytic group at the site of porphobilinogen deaminase obtained by site directed mutagenesis of the hemC gene from Escherichia coli. Biochem 33: 2688–2695Google Scholar
  226. Wright DJ and Lim CK (1983) Simultaneous determination of hydroxymethylbilane synthase and uroporphyrinogen III synthase in erythrocytes by high-performance chromatography. Biochem J 213: 85–88Google Scholar
  227. Zaman Z, Jordan PM and Akhtar M (1973) Mechanism and stereochemistry of the δ-aminolevulinate synthase reaction. Biochem J 135: 257–263Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Yael J. Avissar
    • 1
  • Patricia A. Moberg
    • 2
  1. 1.Department of BiologyRhode Island CollegeProvidenceUSA
  2. 2.Department of BiologyCommunity College of Rhode IslandWarwickUSA

Personalised recommendations