Journal of Atmospheric Chemistry

, Volume 6, Issue 1–2, pp 35–46 | Cite as

Chemistry of organic traces in air

VIII: Sources and distribution of bromo- and bromochloromethanes in marine air and surfacewater of the Atlantic Ocean
  • Th. Class
  • K. Ballschmiter
Influence of Marine and Terrestrial Biosphere on the Chemical Composition of the Atmosphere


The occurrence of CH2Br2, CH2BrCl, CH2I2, CH2ClI, CHBr3, CHBr2Cl, CHBrCl2 and CH2Br-CH2Br in marine air and seawater from various sampling sites in the region of the Atlantic Ocean have been measured and evaluated. A correlation exists between high concentrations of these compounds in air and in water and the occurrence of algae at the coastlines of various islands (The Azores, Bermuda, Tenerife) and in a region of high bioactivity in the Atlantic Ocean near the West African coast.

‘Real-world’ air-water concentration ratios derived from measurements in the open ocean identify the water mass near the African coast with its high primary production as a source for the above compounds. This region has to be discussed also as a possible secondary source in which CHBr2Cl, CHBrCl2 and CH2ClI can be formed via halogen-exchange. Whether CHBrCl2 and CH2ClI under-go transformation to CHCl3 and CH2Cl2, respectively, is open to further investigations.

Direct photolysis and degradation by OH-radicals lead to a gradient in the marine troposphere with reduced concentrations for the organobromides above the tropospheric boundary layer.

Key words

Halomethanes atmosphere seawater algae high resolution gas chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballschmiter, K., Schäfer, W., and Class, Th., 1986, unpublished results.Google Scholar
  2. Berg, W. W., Sperry, P. D., Rahn, K. A., and Gladney, E. S., 1983, Atmospheric bromine in the Arctic, J. Geophys. Res. 88, 6719–6736.Google Scholar
  3. Berg, W. W., Heidt, L. E., Pollock, W., Sperry, P. D., and Cicerone, R. J., 1984, Brominated organic species in the arctic atmosphere, Geophys. Res. Lett. 11, 429–432.Google Scholar
  4. Boje, R. and Tomczak, M. (eds.), 1978, Upwelling Ecosystems, Springer-Verlag, Berlin.Google Scholar
  5. BUA, Beratergremium für umweltrelevante Altstoffe, 1985, Chloroform, Stoffbericht 1, VCH Verlagsgemeinschaft, Weinheim.Google Scholar
  6. Class, Th., Mayer, P., and Ballschmiter, K., 1984, Chemistry of organic traces in air II: The occurrence of halogenated C1-C4 hydrocarbons in forest air, presented at the 2nd European Conference on Chemistry and Environment in Lindau/Lake Constance, in C., Troyanowsky (ed.), 1985, Air Pollution and Plants, VCH Verlagsgemeinschaft, Weinheim, pp. 63–66.Google Scholar
  7. Class, Th. and Ballschmiter, K., 1986, Chemistry of organic traces in air V: Determination of halogenated C1-C2 hydrocarbons in clean marine air and ambient continental air and rain by high resolution gas chromatography using different stationary phases, Fres. Z. Anal. Chem. 325, 1–7.Google Scholar
  8. Class, Th. and Ballschmiter, K., 1986, Chemistry of organic traces in air VI: Distribution of chlorinated C1-C4 hydrocarbons in air over the northern and southern Atlantic Ocean, Chemosphere 15, 413–427.Google Scholar
  9. Class, Th., Kohnle, R., and Ballsehmiter, K., 1986, Chemistry of organic traces in air VII: Bromo- and bromochloromethanes in air over the Atlantic Ocean, Chemosphere 15, 429–436.Google Scholar
  10. Class, Th., 1986, Occurrence and global distribution of volatile C1-C4 organohalogens in the environmental compartments air and water, Thesis, University of Ulm, F.R.Germany.Google Scholar
  11. Crutzen, P.J., 1982, The global distribution of hydroxyl, in E. D., Goldberg (Ed.), Atmospheric Chemistry, Springer Verlag, Berlin, pp. 313–328.Google Scholar
  12. Dyrssen, D. and Fogelqvist, E., 1981, Bromoform concentrations of the Arctic Ocean in the Svalbard area, Oceanol. Acta 4, 313–317.Google Scholar
  13. Fenical, W., 1975, Halogenation in Rhodophyta, J. Phycol. 11, 245–259.Google Scholar
  14. Gschwend, P. M., MacFarlane, J. K., and Newman, K. A., 1985, Volatile halogenated organic compounds released to seawater from temperate marine macro algae, Science 227, 1033–1035.Google Scholar
  15. Lovelock, J. E., 1975, Natural halocarbons in the air and in the sea, Nature 256, 193–194.Google Scholar
  16. McConnell, O. J. and Fenical, J., 1979, Antimicrobial agents from marine algae of the family Bonnemaisoniacaea, in H. A., Hoppe, T., Levring, and Y., Tanaka (eds.), Marine Algae in Pharmaceutical Science, de Gruyter Verlag, Berlin, pp. 403–428.Google Scholar
  17. McElroy, M. B., Salawitch, R. J., Wofsy, S. C., and Logan, J. A., 1986, Reduction of antarctic ozone due to synergistic interactions of chlorine and bromine, Nature 321, 759–762.Google Scholar
  18. Michanek, G., 1979, Seaweed resources for pharmaceutical uses, in H. A., Hoppe, T., Levring and Y., Tanaka (eds.), Marine Algae in Pharmaceutical Science, De Gruyter Verlag, Berlin, pp. 203–236.Google Scholar
  19. Molina, L. T., Molina, M. J., and Rowland, F. S., 1982, Ultraviolet absorption cross-sections of several brominated methanes and ethanes of atmospheric interest, J. Phys. Chem. 86, 2672–2676.Google Scholar
  20. Penkett, S. A., 1982, Nonmethan organics in the remote troposphere, in E. D., Goldberg, (ed.), Atmospheric Chemistry, Springer-Verlag, Berlin, pp. 329–355.Google Scholar
  21. Penkett, S. A., Jones, B. M. R., Rycroft, M. J., and Simmons, D. A., 1985, An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere, Nature 318, 550–553.Google Scholar
  22. Prather, M. J., McElroy, M. B., and Wofsy, S. C., 1984, Reductions in ozone at high concentrations of stratospheric halogens, Nature 312, 227–231.Google Scholar
  23. Rasmussen, R. A. and Khalil, M. A. K., 1984, Gaseous bromine in the arctic and arctic haze, Geophys. Res. Lett. 11, 433–436.Google Scholar
  24. Schuhmacher, H., 1976, Kordllenriffe — Ihre Verbreitung, Tierwelt und Ökologie, BLV Verlags-gemeinschaft, Munich.Google Scholar
  25. Singh, H. B., Salas, L. J., and Stiles, R. E., 1983, Methyl halides in an over the Eastern Pacific (40° N-32° S), J. Geophys. Res. 88C, 3684–3690.Google Scholar
  26. Liss, P. S., and Slater, P. G., 1974, Fluxes of gases across the air — sea interface, Nature 247, 181–184.Google Scholar
  27. Spencer, J. E., and Rowland, F. S., 1978, Bromine nitrate and its stratospheric significance, J. Phys. Chem. 82, 7–10.Google Scholar
  28. Tung, K.-K., Ko, M. K. W., Rodriguez, J. M., and Nien, Dak Sze, 1986, Are Antarctic ozone variations a manifestation of dynamics or chemistry? Nature 322, 811–814.Google Scholar
  29. Wofsy, S. C., McElroy, M. B., and Yuk, Ling Yung, 1975, The chemistry of atmospheric bromine, Geophys. Res. Lett. 2, 215–218.Google Scholar
  30. Zafiriou, O. C., 1975, Reaction of methyl halides with seawater and marine aerosols, J. Mar. Res. 33, 75–81.Google Scholar
  31. Zika, R. G., and Gidel, L. T., 1984, A comparison of photolysis and substitution decomposition rates of methyl iodide in the ocean, Geophys. Res. Lett. 11, 353–356.Google Scholar

Copyright information

© D. Reidel Publishing Company 1988

Authors and Affiliations

  • Th. Class
    • 1
  • K. Ballschmiter
    • 1
  1. 1.Department of Analytical ChemistryUniversity of UlmUlmF.R.Germany

Personalised recommendations