Journal of Atmospheric Chemistry

, Volume 7, Issue 1, pp 1–18 | Cite as

The solubility and behaviour of acid gases in the marine aerosol

  • P. Brimblecombe
  • S. L. Clegg


The following Henry's law constants (KH/mol2kg-2atm-1) for HNO3 and the hydrohalic acids have been evaluated from available partial pressure and other thermodynamic data from 0°–40°C, 1 atm total pressure: HNO 3 , 40°C–5.85×105; 30°C–1.50×106; 25°C–2.45×106; 20°C–4.04×106; 10°C–1.15×107; 0°C–3.41×107. HF, 40°C–3.2; 30°C–6.6; 25°C–9.61; 20°C–14.0; 10°C–32.0; 0°C–76. HCl, 40°C–4.66×105; 30°C–1.23×106; 25°C–2.04×106; 20°C–3.37×106; 10°C–9.71×106; 0°C–2.95×107. HBr, 40°C–2.5×108; 30°C–7.5×108; 25°C–1.32×109; 20°C–2.37×109; 10°C–8.10×109; 0°C–3.0×1010. HI, 40°C–5.2×108; 30°C–1.5×109; 25°C–2.5×109; 20°C–4.5×109; 10°C–1.5×1010; 0°C–5.0×1010. Simple equilibrium models suggest that HNO3, CH3SO3H and other acids up to 10x less soluble than HCl displace it from marine seasalt aerosols. HF is displaced preferentially to HCl by dissolved acidity at all relative humidities greater than about 80%, and should be entirely depleted in aged marine aerosols.

Key words

Hydrobromic acid hydrochloric acid hydrofluoric acid hydro-iodic acid nitric acid methanesulphonic acid solubility Henry's law seasalt aerosol degassing activity coefficient Pitzer model fluoride depletion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerlof, G. and Teare, J. W., 1937, Thermodynamics of concentrated aqueous solutions of hydrochloric acid, J. Am. Chem. Soc. 59, 1855–1868.Google Scholar
  2. Bates, S. J. and Kirschman, H. D. 1919, The vapour pressures and free energies of the hydrogen halides in aqueous solution; the free energy of formation of hydrogen chloride, J. Am. Chem. Soc. 41, 1991–2001.Google Scholar
  3. Bates, T. S. and Gammon, R. M., 1986, Oceanic dimethyl sulphide and the global atmospheric sulphur cycle, Trans. Am. Geophys. Union 66, 1309.Google Scholar
  4. Blanchard, D. C., 1985, The oceanic production of atmospheric sea salt, J. Geophys. Res. 90, 961–963.Google Scholar
  5. Blanchard, D. C. and Woodcock, A. H., 1980, The production, concentration and vertical distribution of the seasalt aerosol, Ann. New York Acad. Sci. 338, 330–347.Google Scholar
  6. ten Brink, H. M., Mallant, R. K. A. M., Kos, G. P. A., Gouman, J. M., and van der Vate, J. F., 1982, SO2 conversion in the marine atmosphere, in B. Versino and H. Ott (eds.), Physico-chemical Behaviour of Atmospheric Pollutants, D. Reidel, Dordrecht.Google Scholar
  7. Brosheer, J. C., Lenfesty, F. A., and Elmore, K. L., 1947, Vapour pressure of hydrofluoric acid solutions, Ind. Eng. Chem. 38, 423–427.Google Scholar
  8. Cadle, R. D., 1980, A comparison of volcanic with other fluxes of atmospheric trace gas constituents, Rev. Geophys. Space Phys. 18, 746–752.Google Scholar
  9. Cerquetti, A., Longhi, P., and Mussini, T., 1968, Thermodynamics of aqueous hydrochloric acid from EMF's of hydrogen-chlorine cells, J. Chem. Eng. Data 13, 458–461.Google Scholar
  10. Chesselet, R., Morelli, J., and Buat-Menard, P., 1972, Some aspects of the geochemistry of marine aerosols, in D. Dyrrsen and D. Jagner (eds.), The Changing Chemistry of the Oceans, Wiley, London.Google Scholar
  11. Clegg, S. L. and Brimblecombe, P., 1985a, The Henry's law constant of methanesulphonic acid and its implications for atmospheric chemistry, Env. Tech. Lett. 6, 269–278.Google Scholar
  12. Clegg, S. L. and Brimblecombe, P., 1985b, Potential degassing of HCl from acidified sodium chloride droplets, Atmos. Environ. 19, 465–470.Google Scholar
  13. Clegg, S. L. and Brimblecombe, P., 1986, The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ. 20, 2483–2485.Google Scholar
  14. Clegg, S. L. and Brimblecombe, P., 1987a, Equilibrium partial pressures of strong acids over concentrated saline solutions. Part I. HNO3, Atmos. Environ. 22, 91–100.Google Scholar
  15. Clegg, S. L. and Brimblecombe, P., 1987b, Equilibrium partial pressures of strong acids over concentrated saline solutions, Part II. HCl, Atmos. Environ. 22, 117–129.Google Scholar
  16. Clegg, S. L. and Brimblecombe, P., 1988, Hydrofluoric and hydrochloric acid behaviour in concentrated saline solutions, J. Chem. Soc. Dalton Trans., 705–710.Google Scholar
  17. Covington, A. K., Robinson, R. A., and Thompson, R., 1973, Osmotic and activity coefficients of methanesulphonic acid, J. Chem. Eng. Data 18, 422–423.Google Scholar
  18. Davis, W. and DeBruin, H. J., 1964, New activity coefficients of 0–100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem. 26, 1069–1083.Google Scholar
  19. Denbigh, K., 1971, The Principles of Chemical Equilibrium, 3rd edn., CUP, Cambridge.Google Scholar
  20. Dobson, H. J. E. and Masson, I., 1924, The activity of water in hydrochloric acid, J. Chem. Soc. 125, 668–676.Google Scholar
  21. Dunn, J. S. and Rideal, E. K., 1924, The vapour pressure of hydrochloric acid, J. Chem. Soc. 125, 676–684.Google Scholar
  22. Eriksson, E., 1960, The yearly circulation of chloride and sulphur in nature, meteorological, geochemical and pedological implications, Part 2, Tellus 12, 63–109.Google Scholar
  23. Fredenhagen, K. and Wellman, M., 1932, Verteilungszahlen des Fluorwassererstoffs über dem Zweistoffsystem [H2O−HF] bei 25°C und die Siedepunktskurve dieses Systems bei Atmosphärendruck, Z. Phys. Chem. A162, 454–466.Google Scholar
  24. Freier, R. K., 1978, Aqueous Solutions, Vol. 2, Walter de Gruyter, Berlin.Google Scholar
  25. Fritz, J. J. and Fuget, C. R., 1956, Vapour pressure of aqueous hydrogen chloride solutions, 0° to 50°C, Chem. Eng. Data Ser. 1, No. 1, 10–12.Google Scholar
  26. Haase, R., Naas, H., and Thumm, H., 1963, The thermodynamic behaviour of concentrated hydrohalic acids, Z. Physik. Chem. (Frankfurt) 37, 210–229 (in German).Google Scholar
  27. Haase, R., Ducker, K. H., and Kuppers, H. A., 1965, Aktivitätskoeffizienten und Dissociationskonstanten waßriger Salpetersaure and Überchlorsaure, Ber. Bunsenges. Phys. Chem. 69, 98–110.Google Scholar
  28. Hala, E., Wichterle, I., Polak, J., and Boublik, T. 1968, Vapour-Liquid Equilibrium Data at Normal Pressures, Pergamon, London.Google Scholar
  29. Hamer, W. J. and Wu, Y.-C. 1970, The activity coefficients of hydrofluoric acid in water from 0 to 35°C, J. Res. Nat. Bur. Stand. 74A, 761–768.Google Scholar
  30. Hamer, W. J. and Wu, Yung-Chi, 1972, Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25°C, J. Phys. Chem. Ref. Data 1, 1047–1099.Google Scholar
  31. Harned, H. S. and Owen, B. B., 1958, The Physical Chemistry of Electrolyte Solutions, Reinhold, New York.Google Scholar
  32. Harvie, C. E., Moller, N., and Weare, J. H., 1984, The prediction of mineral solubilities in natural waters: the Na−K−Mg−Ca−H−Cl−SO4−OH−HCO3−CO3−CO2−H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta 48, 723–751.Google Scholar
  33. Harvie, C. E. and Weare, J. H., 1980, The prediction of mineral solubilities in natural waters: the Na−K−Mg−Ca−Cl−SO4−H2O system from zero to high concentration at 25°C, Geochim. Cosmochim. Acta 44, 981–997.Google Scholar
  34. Hawkins, J. E., 1932, The activity coefficients of hydrochloric acid in uni-univalent solutions at constant total molality, J. Am. Chem. Soc. 54, 4481–4487.Google Scholar
  35. Ionin, M. V. and Kurina, N. V., 1964, Determination of average activity coefficients and osmotic coefficients of HCl in concentrated solutions, Tr. po Khim. i Khim. Tekhnol. 1964 (1), 40–42 (in Russian).Google Scholar
  36. Keene, W. C. and Galloway, 1986, Considerations regarding natural sources for formic and acetic acids in the troposphere, J. Geophys. Res. 91, 14466–14474.Google Scholar
  37. Kelly, T. J., Stedman, D. H., Ritter, J. A., and Harvey, R. B., 1980, Measurements of oxides of nitrogen and nitric acid in clean air, J. Geophys. Res. 85, 7417–7425.Google Scholar
  38. Martens, C. S., Wesolowski, J. J., Hariss, J. J., and Kaifer, R., 1973, Chlorine loss from Puerto Rican and San Francisco Bay area aerosols, J. Geophys. Res. 78, 8778–8791.Google Scholar
  39. Millero, F. J., 1982, Use of models to determine ionic interactions in natural waters, Thalassia Jugoslavica 18, 253–291.Google Scholar
  40. Millero, F. J., 1983, The estimation of pKHA * of acids in seawater using the Pitzer equations, Geochim. Cosmochim. Acta 47, 2121–2129.Google Scholar
  41. Munter, P. A., Aepli, O. T., and Kossatz, R. A., 1949, Partial pressure measurements on the system hydrogen fluoride-water, Ind. Eng. Chem. 41, 1504–1508.Google Scholar
  42. Perez, Fiz. F. and Fraga, F., 1987, Association constant of fluoride and hydrogen ions in seawater, Mar. Chem. 21, 161–168.Google Scholar
  43. Perry, J. (ed.), 1963, Chemical Engineers Handbook, McGraw-Hill, New York.Google Scholar
  44. Pitzer, K. S., 1973, Thermodynamics of electrolytes I: Theoretical basis and general equations, J. Phys. Chem. 77, 268–277.Google Scholar
  45. Pitzer, K. S., 1979, Theory: ion interaction approach, in R. M. Pytkowicz (ed.), Activity Coefficients in Electrolyte Solutions, Vol. I, CRC Press, Boca Raton, Florida, pp. 209–265.Google Scholar
  46. Pitzer, K. S. and Mayorga, G., 1973, Thermodynamics of electrolytes II: activity coefficients and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77, 2300–2308.Google Scholar
  47. Pitzer, K. S., Roy, R. N., and Silvester, L. F. 1977, Thermodynamic of electrolytes 7. Sulphuric acid, J. Am. Chem. Soc. 99, 4930–4936.Google Scholar
  48. Potier, A., 1956, Thermodynamic properties of the system nitric acid-water and of the system dinitrogen tetroxide-nitric acid, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 20, 1–98.Google Scholar
  49. Robinson, R. A. and Stokes, R. H., 1959, Electrolyte Solutions, Butterworths, London.Google Scholar
  50. Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., 1961, Selected Values of Chemical Thermodynamic Properties, Part I, Tables, NBS Circular 500, US Govt. Printing Office, Washington.Google Scholar
  51. Schwartz, S. E. and White, W. H., 1981, Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in J. R. Pfafflin and E. N. Ziegler (eds.), Advances in Environmental Science and Engineering, Vol. 4, Gordon and Breach, New York.Google Scholar
  52. Stelson, A. W., Freidlander, S. K., and Seinfeld, J. H., 1979, A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ. 13, 369–371.Google Scholar
  53. Stumm, W. and Morgan, J. J., 1981, Aquatic Chemistry, Wiley, New York.Google Scholar
  54. Stull, D. R. and Prophet, H., 1971, JANAF Thermochemical Tables, 2nd edn., NSRDS-NBS-37, US Govt. Printing Office, Washington.Google Scholar
  55. Tang, I. N., Munkelwitz, H. R., and Lee, J. H., 1983, Equilibrium partial pressures of nitric acid and water vapour over dilute aqueous solutions at 25°C, Preprint Extended Abstract, Brookhaven National Laboratory, BNL-33412.Google Scholar
  56. Tanner, R. L., 1982, An ambient experimental study of phase equilibrium in the atmospheric system: aerosol H+, NH4 +, SO4 2-, NO3 -−NH3(g), HNO3(g), Atmos. Environ. 16, 2935–2942.Google Scholar
  57. Vandoni, M. R. and Laudy, M., 1952, Mesure de tensions de vapeur partielles des melanges NO3H−H2O a 20°C et verification de l'equation de Margules-Duhem, J. Chim. Phys. 49, 99–108.Google Scholar
  58. Vierkorn-Rudolph, B., Bachman, K., Schwarz, B., and Meixner, F. X., 1984, Vertical profiles of HCl in the troposphere, J. Atmos. Chem. 2, 47–63.Google Scholar
  59. Washburn, E. W. (ed.), 1926, International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, McGraw-Hill, New York.Google Scholar
  60. Whitfield, M., 1975, The extension of chemical models for seawater to include trace components at 25°C and one atmosphere pressure, Geochim. Cosmochim. Acta 39, 1545–1557.Google Scholar
  61. Wilkniss, P. E. and Bressan, D. J., 1971, Chemical processes at the air sea interface: the behaviour of fluorine, J. Geophys. Res. 76, 736.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • P. Brimblecombe
    • 1
  • S. L. Clegg
    • 1
  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichU.K.

Personalised recommendations