, Volume 104, Issue 1, pp 403–411 | Cite as

Elevated CO2 and the mineral content of herbaceous and woody plants

  • Dieter Overdieck
Case Studies


The CO2 enrichment effects (300–650 µmol mol-1) on mineral concentration (N, P, K, Ca, Mg, Mn, Fe, Zn), absolute total mineral contents per individual and of whole stands of four herbaceous (Trifolium repens L.,Trifolium pratense L.,Lolium perenne L.,Festuca pratensis HUDS.) and two woody species (Acer pseudo-platanus L.,Fagus sylvatica L.) were investigated.

In general, the mineral concentration of the plant tissues decreased (all six species: N>Ca>K>Mg) with the exception of P. Mn and Fe were only determined for the tree species. Both decreased in concentration (Mn>Fe). Zn was only analysed forTrifolium pratense andFestuca pratensis and decreased significantly in the grass.

Despite of decreases in concentrations of as much as 20% in some cases there were increases in absolute amounts per individual and, therefore, in the whole vegetation up to 25% because of the enhanced dry matter accumulation at elevated CO2 supply.


CO2 enrichment Mineral content of plants and vegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradstreet, R. B. 1965. The Kjeldahl method for organic nitrogen. Academic Press, New York.Google Scholar
  2. Carter, D. R. & Peterson, K. M. 1983. Effects of a CO2-enriched atmosphere on the growth and competition interaction of a C3 and a C4 grass. Oecologia 58: 188–193.Google Scholar
  3. Dahlmann, R. C., Strain, B. R. & Rogers, H. H. 1985. Research on the response of vegetation to elevated atmospheric carbon dioxide. J. Environ. Qual. 14: 1–8.Google Scholar
  4. Eamus, D. & Jarvis, P. G. 1989. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecolog. Res. 19: 1–55.Google Scholar
  5. Ehrenberger, F. 1991. Analysenmethoden zur Bestimmung der Elemente im Makro-, Mikro- und Spurebereich in organischer und anorganischer Matrix, pp. 696–698, Weinheim, New York, Basel, Cambridge.Google Scholar
  6. Ellenberg, H., Mayer, R. & Schauermann (eds) 1986. Ökosystemforschung-Ergebnisse des Sollingprojektes 1966–1986. pp. 375–415. Ulmer Verlag, Stuttgart.Google Scholar
  7. Gaudillère, J.-P. & Mousseau, M. 1989. Short term effect of CO2 enrichment on leaf development and gas exchange of young poplars (Populus euramericana cv I 214). Acta Oecologica, Oecol. Plant. 10: 95–105.Google Scholar
  8. Hollinger, D. Y. 1987. Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. Tree Physiol. 3: 193–202.Google Scholar
  9. Luxmoore, R. J., O'Neill, E. G., Ellis, J. M. & Rogers, H. H. 1986. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. J. Environ. Qual. 15: 244–251.Google Scholar
  10. Masterson, C. L. & Sherwood, M. T. 1978. Some effects of increased atmospheric carbon dioxide on white clover (Trifolium repens) and pea (Pisum sativum). Plant Soil 49: 421–426.Google Scholar
  11. Mousseau, M. & Enoch, H. H. 1989. Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.). Plant, Cell Environ. 12: 927–934.Google Scholar
  12. Nijs, I., Impens, I. & Behaeghe, T. 1988a. Effects of rising atmospheric carbon dioxide concentration on gas exchange and growth of perennial ryegrass. Photosynthetica 22: 44–50.Google Scholar
  13. Nijs, I., Impens, I. & Behaeghe, T. 1988b. Effects of elevated atmospheric carbon dioxide on gas exchange and growth of white clover. Photosynthesis Res. 15: 163–176.Google Scholar
  14. Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. 1986. Effects at atmospheric CO2 enrichment on the growth and mineral nutrition ofQuercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.Google Scholar
  15. Norby, R. J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol. Plant. 71: 77–82.Google Scholar
  16. O'Neill, E. G., Luxmoore, R. J. & Norby, R. J. 1987. Elevated atmospheric CO2 effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations ofLiriodendron tulipifera L. Plant Soil 104: 3–11.Google Scholar
  17. Overdieck, D., Bossemeyer, D. & Lieth, H. 1984. Long-term effects of an increased CO2 concentration level on terrestrial plants in model-ecosystems. I.-Phytomass production and competition ofTrifolium repens L. andLolium perenne L. Progress in Biometeorology 3: 344–352.Google Scholar
  18. Overdieck, D. & Reining, Franz 1986. Effect of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems. I. Phytomass production. Acta Oecologica, Oecol. Plant. 7: 357–366.Google Scholar
  19. Overdieck, D. & Reining, Eva. 1986. Effects of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems. II.-Nutrient uptake. Acta Oecologia, Oecol. Plant. 7: 367–378.Google Scholar
  20. Overdieck, D. & Forstreuter, M. 1987. Langzeit-Effekte eines erhöhten CO2-Angebotes bei Rotklee-Wiesenschwingel-gemeinschaften. Verhandl. d. Ges. f. Ökologie 16: 197–206.Google Scholar
  21. Overdieck, D., Reid, Ch. & Strain, B. R. 1988. The effects of preindustrial and future CO2 concentrations on growth, dry matter production and the C/N-relationship in plants at low nutrient supply:Vigna unguiculata (cowpea),Abelmoschus esculentus (okra) andRaphanus sativus (radish). Angew. Botanik 62: 119–134.Google Scholar
  22. Overdieck, D. 1990. Effects of elevated CO2-concentration levels on nutrient contents of herbaceous and woody plants. In: Goudriaan, J., van, Keulen, H. & van, Laar, H. H. (eds), The greenhouse effect and primary productivity in European agro-ecosystems, pp. 31–37. Pudoc, Wageningen.Google Scholar
  23. Reining, Eva 1991. Langzeiteffekte von erhöhtem CO2-Angebot auf den Mineralstoffhaushalt vonAcer pseudoplatanus undFagus sylvatica. Dissertation, Universität Osnabrück.Google Scholar
  24. Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M. & Surano, K. A. 1983. Responses of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual. 12: 569–574.Google Scholar
  25. Williams, W. E., Garbutt, K., Bazzaz, F. A. & Vitousek, P. M. 1986. The response of plants to elevated CO2. IV. Two deciduous-forest tree communities. Oecologia 69: 454–469.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institut für Okologie, Ökologie der GehölzeTechnische Universität BerlinBerlinGermany

Personalised recommendations