Vegetatio

, Volume 104, Issue 1, pp 117–131 | Cite as

Crop responses to CO2 enrichment

  • H. H. Rogers
  • R. C. Dahlman
Ecophysiological and Ecosystem Responses: Effects of CO2 Enrichment on Growth and Production

Abstract

Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agro-ecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO2. Future research should include these targets: search for new insights, development of new techniques, construction of better simulation models, investigation of belowground processes, study of interactions, and the elimination of major discrepancies in the scientific knowledge base.

Keywords

Global change Plants Carbon dioxide Greenhouse effect Elevated carbon dioxide Exposure techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acock, B. 1990. Effects of CO2 on photosynthesis, plant growth and other processes. In: Kimball, B. A., Rosenberg, N. J. & Allen, L. H. (eds), Impact of CO2, trace gases, & climate change on global agriculture. ASA Special Publication No 53. pp. 45–60. Am. Soc. Agron., Madison, WI.Google Scholar
  2. Acock, B. & Allen, L. H.Jr. 1985. Crop responses to elevated carbon dioxide concentrations. In: Strain, B. R. & Cure, J. D. (eds), Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238. pp. 53–97. Office of Energy Research. U.S. Dept. of Energy, Washington, DC.Google Scholar
  3. Adams, R. A., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J. D., Curry, R. B., Jones, J. W., Boote, K. J. & Allen, L. H.Jr. 1990. Global climate change and US agriculture. Nature 345: 219–224.Google Scholar
  4. Akey, D. H. & Kimball, B. A. 1989. Growth and development of the beet armyworm on cotton grown in an enriched carbon dioxide atmosphere. Southwestern Entomol. 14: 255–260.Google Scholar
  5. Allen, L. H.Jr. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 19: 15–34.Google Scholar
  6. Allen, L. H., Jr., Beladi, S. E. & Shinn, J. H. 1985. Modeling the feasibility of free-air carbon dioxide releases for vegetation response research. 17th Conf. on Agriculture and Forest Meteorology, Am. Meteorol. Soc. Boston, MA.Google Scholar
  7. Allen, L. H.Jr., Boote, K. J., Jones, J. W., Jones, P. H., Valle, R. R., Vu, C. V., Acock, B., Rogers, H. H. & Dahlman, R. C. 1987. Response of vegetation to rising carbon dioxide: photosynthesis, biomass, and seed yield of soybean. Global Biogeochem. Cycles 1: 1–14.Google Scholar
  8. Allen, L. H.Jr., Bisbal, E. C., Campbell, W. J. & Boote, K. J. 1990a. Carbon dioxide effects on soybean developmental stages and expansive growth. Soil & Crop Sci. Soc. Fla. Proc. 49: 124–131.Google Scholar
  9. Allen, L. H.Jr., Valle, R. R., Mishoe, J. W., Jones, J. W. & Jones, P. H. 1990b. Soybean leaf gas exchange responses to CO2 enrichment. Soil & Crop Sci. Soc. Fla. Proc. 49: 192–198.Google Scholar
  10. Baker, J. T., Allen, L. H.Jr., Boote, K. J., Jones, P. & Jones, J. W. 1989. Response of soybean to air temperature and carbon dioxide concentration. Crop Sci. 29: 98–105.Google Scholar
  11. Baker, J. T., Allen, L. H.Jr., Boote, K. J., Jones, P. & Jones, J. W. 1990a. Developmental responses of rice to photoperiod and carbon dioxide concentration. Agric. & Forest Meteorol. 50: 201–210.Google Scholar
  12. Baker, J. T., Allen, L. H.Jr., Boote, K. J., Jones, P. & Jones, J. W. 1990b. Rice photosynthesis and evapotranspiration in subambient, ambient, and superambient carbon dioxide concentrations. Agron. J. 82: 834–840.Google Scholar
  13. Besford, R. T., Ludwig, L. J. & Withers, A. C. 1990. The greenhouse effect: Acclimation of tomato plants growing in high CO2, photosynthesis and ribulose-1,5-bis phosphate carboxylase protein. J. Exp. Bot. 41: 925–931.Google Scholar
  14. Bhattacharya, N. C., Biswas, P. K., Bhattacharya, S., Sionit, N. & Strain, B. R. 1985. Growth and yield response of sweet potato to atmosphetic CO2 environment. Crop Sci. 25: 975–981.Google Scholar
  15. Black, C. C.Jr. 1986. Effects of CO2 concentration on photosynthesis and respiration of C4 and CAM plants. In: Enoch, H. Z. & Kimball, B. A. (eds), Carbon dioxide, enrichment of greenhouse crops, Vol. II: Physiology, yield, and economics. pp. 29–40. CRC Press, Boca Raton, FL.Google Scholar
  16. Bolin, B., Doos, B. R., Jager, J. & Warrick, R. A. 1986. Scope 29—The greenhouse effect, climate change, and ecosystems. John Wiley & Sons, NY. 541 pp.Google Scholar
  17. Boone, M. Y. L., Rickman, R. W. & Whisler, F. D. 1990. Leaf appearance rates of two winter wheat cultivars under high carbon dioxide conditions. Agron. J. 82: 718–724.Google Scholar
  18. Bouwman, A. F. (ed). 1990. Soils and the greenhouse effect. John Wiley & Sons, NY. 567 pp.Google Scholar
  19. Brun, W. A. & Cooper, R. L. 1967. Response of soybeans to a carbon dioxide-enriched atmosphere. Crop Sci. 7: 455–467.Google Scholar
  20. Buol, S. W., Sanchez, P. A., Kimble, J. M. & Weed, S. B. 1990. Predicted impact of climate warming on soil properties and use. In: Kimball, B. A., Roserberg, N. J. & Allen, L. H.Jr. (eds), Impact of carbon dioxide, trace gases, and climate change on global agriculture. ASA Special Publication No. 53, pp. 71–82. Am. Soc. Agron., Madison, WI.Google Scholar
  21. Chaudhuri, U. N., Burnett, R. B., Kirkham, M. B. & Kanemasu, E. T. 1986. Effect of carbon dioxide on sorghum yield, root growth, and water use. Agric. For. Meteorol. 37: 109–122.Google Scholar
  22. Chaudhuri, U. N., Kirkham, M. B. & Kanemasu, E. T. 1990. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Sci. 30: 853–857.Google Scholar
  23. Cure, J. D. & Acock, B. 1986. Crop responses to carbon dioxide doubling: A literature survey. Agric. & Forest Meteorol. 38: 127–145.Google Scholar
  24. Cure, J. D., Israel, D. W. & Rufty, T. W.Jr. 1988. Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Crop Sci. 28: 671–677.Google Scholar
  25. Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J. & Allen, L. H.Jr. 1990. Response of crop yield to predicted changes in climate and atmospheric CO2 using simulation. Trans. ASAE 33: 1383–1389.Google Scholar
  26. Dahlman, R. C., 1985. Modeling needs for predicting responses to CO2 enrichment: Plants, communities and ecosystems. Ecol. Model. 29: 77–106.Google Scholar
  27. Dahlman, R. C., Strain, B. R. & Rogers, H. H. 1985. Research on the response of vegetation to elevated atmospheric carbon dioxide. J. Environ. Qual. 14: 1–8.Google Scholar
  28. Del, Castillo, D. B., Acock, B., Reddy, V. R. & Acock, M. C. 1989. Elongation and branching of roots on soybean plants in a carbon dioxide-enriched aerial environment. Agron. J. 81: 692–695.Google Scholar
  29. Drake, B. G., Rogers, H. H. & AllenJr., L. H. 1985. Methods of exposing plants to elevated CO2 concentrations. In: Strain, B. R. & Cure, J. D. (eds), Direct effects of CO2 on vegetation. DOE/ER-0238. pp. 112–31. Office of Energy Research. U.S. Dept. of Energy, Washington, DC.Google Scholar
  30. Enoch, H. Z. & Kimball, B. A. (eds.) 1986. CO2 enrichment of greenhouse crops: Vol. II, Physiology, yield and economics. CRC Press, Boca Raton, FL. 230 pp.Google Scholar
  31. Enoch, H. Z. & Zieslin, N. 1988. Growth and development of plants in response to carbon dioxide concentrations. Applied Agric. Res. 3: 248–256.Google Scholar
  32. Fajer, E. D. 1989. How enriched carbon dioxide environments may alter biotic systems even in the absence of climatic changes. Conservation Biol. 3: 318–320.Google Scholar
  33. Fajer, E. D., Bowers, M. D. & Bazzaz, F. A. 1989. The effects of enriched carbon dioxide atmospheres on plantinsect herbivore interactions. Sci. 243: 1198–1200.Google Scholar
  34. Ford, M. A. & Thorne, G. N. 1967. Effect of carbon dioxide concentration on growth of sugar-beet, barley, kale, and maize. Ann. Bot. 31: 629–644.Google Scholar
  35. Gifford, R. M. 1988. Direct effects of higher carbon dioxide concentrations on vegetation. In: Pearman, G. I. (ed), Green: Planning for climate change. pp. 506–519. E. J. Brill Co., NY.Google Scholar
  36. Gifford, R. M. 1979. Growth and yield of carbon dioxide-enriched wheat under water-limited conditions. Aust. J. Plant Physiol. 6: 367–378.Google Scholar
  37. Gifford, R. M. & Morison, J. I. L. 1985. Photosynthesis, water use and growth of a C4 grass stand at high CO2 concentration. Photosyn. Res. 7: 69–76.Google Scholar
  38. Goeschl, J. D., Fares, Y., Magnuson, C. E., Schield, H. W., Strain, B. R., Jaeger, C. H. & Nelson, C. E. 1988. Short-lived isotope kinetics: A window to the inside. In: Beecher, G. R. (ed), Research instrumentation for the 21st century. pp. 21–53. Martinus Nijhoff.Google Scholar
  39. Goudriaan, J. & de, Ruiter, H. E. 1983. Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. I. Dry matter, leaf area and development. Neth. J. Agric. Sci. 31: 157–169.Google Scholar
  40. Goudriaan, J., van, Keulen, H. & van, Laar, H. H. (eds). 1990. The greenhouse effect and primary productivity in European agro-ecosystems. Pudoc, Wageningen. 90 pp.Google Scholar
  41. Harvey, L. D. D. 1989. Effect of model structure on the response of terrestrial biosphere models to CO2 and temperature increases. Global Biogeochem. Cycles 3: 137–153.Google Scholar
  42. Hatfield, J. L. 1990. Climate change and the potential impact on the soil resource. J. Iowa Acad. Sci. 97: 82–83.Google Scholar
  43. Havelka, U. D., Wittenbach, V. A. & Boyle, M. G. 1984a. CO2-enrichment effects on wheat yield and physiology. Crop Sci. 24: 1163–1168.Google Scholar
  44. Havelka, U. D., Ackerson, R. C., Boyle, M. G. & Wittenback, V. A. 1984b. CO2-enrichment effects on soybean physiology. I. Effects of long-term CO2 exposure. Crop Sci. 24: 1146–1150.Google Scholar
  45. Heagle, A. S., Body, D. E. & Heck, W. W. 1973. An open top field chamber to assess the impact of air pollution on plants. J. Environ. Qual. 2: 365–368.Google Scholar
  46. Hendrey, G. R., Lewin, K. F., Kolber, Z. & Daum, M. 1988. Free-air carbon dioxide enrichment (FACE) facility development: I. Concept, prototype design, and performance. Series 045, Response of vegetation to carbon dioxide, BNL-42338, Brookhaven National Laboratory, Upton, NY. Office of Energy Research. U.S. Dept. of Energy, Washington, DC. 36 pp.Google Scholar
  47. Houpis, J. L., Costello, M. T. & Cowles, S. 1991. A branch exposure chamber for fumigatingPinus ponderosa to atmospheric pollution. J. Environ. Qual. 20: 467–474.Google Scholar
  48. Huber, S. C., Rogers, H. H. & Israel, D. W. 1984a. Effects of CO2 enrichment on photosynthesis and photosynthate partitioning in soybean (Glycine max) leaves. Physiol. Plant. 62: 95–101.Google Scholar
  49. Huber, S. C., Rogers, H. H. & Mowry, F. L. 1984b. Effects of water stress on photosynthesis and carbon partitioning in soybean [Glycine max (L.)Merr.] plants grown in the field at different CO2 levels. Plant Physiol. 76: 244–249.Google Scholar
  50. Hurd, R. G. 1968. Effects of carbon dioxide-enrichment on the growth of young tomato plants in low light. Ann. Bot. 32: 531–542.Google Scholar
  51. Idso, S. B. 1989. Carbon dioxide and global change: Earth in transition. IBR Press, Tempe, AZ. 292 pp.Google Scholar
  52. Idso, S. B., Kimball, B. A., Anderson, M. G. & Mauney, J. R. 1987. Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agric., Ecosys. & Environ. 20: 1–10.Google Scholar
  53. Imai, K., Coleman, D. F. & Yanagisawa, T. 1985. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.). Japan J. Crop Sci. 54: 413–418.Google Scholar
  54. Jones, P., Allen, L. H.Jr. & Jones, J. W. 1985. Responses of a soybean canopy photosynthesis and transpiration to whole-day temperature changes in different CO2 environments. Agron. J. 77: 242–249.Google Scholar
  55. Jones, P., Jones, J. W., Allen, L. H.Jr. & Mishoe, J. W.. 1984. Dynamic computer control of closed environmental plant growth chambers. Design and verification. Trans. ASAE 27: 879–888.Google Scholar
  56. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G. & Roeloffzen, H. 1989. A three dimensional model of atmospheric CO2 transport based on observed winds: observational data and preliminary analysis. In: Peterson, D. H. (ed), Aspects of climate variability in the Pacific and the Western Americas. Geophysical Monograph 55: 165–235.Google Scholar
  57. Kimball, B. A. 1983a. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron. J. 75: 779–788.Google Scholar
  58. Kimball, B. A. 1983b. Carbon dioxide and agricultural yield: An assemblage and analysis of 770 prior observations. WCL Report 14, U.S. Dept. of Agric., Agric. Res. Serv., 71 pp.Google Scholar
  59. Kimball, B. A. & Idso, S. B. 1983. Increasing atmospheric CO2: Effects on crop yield, water use, and climate. Agric. Water Man. 7: 55–72.Google Scholar
  60. Kimball, B. A., Mauney, J. R., Guinn, G., Nakayama, F. S., PinterJr., P. J., Clawson, K. L., Reginato, R. J. & Idso, S. B. 1983. Series 021, Effects of increasing atmospheric CO2 on yield and water use of crops. Office of Energy Research. U.S. Dept. of Energy, Washington, DC. 37 pp.Google Scholar
  61. Kimball, B. A., Mauney, J. R., Nakayama, F. S. & Idso, S. B. 1989. Effects of CO2 and changing climate variables on plants. In: Proc. of 20th annual anniversary meeting of Canada Grains Council. pp. 116–139. Winnipeg, Canada, 4–5 April 1989.Google Scholar
  62. Kimball, B. A., Rosenberg, N. J. & Allen, L. H.Jr. (eds). 1990. Impact of CO2, trace gases, and climate change on global agriculture. ASA Special Publication No. 53, Am. Soc. Agron., Madison, WI. 133 pp.Google Scholar
  63. King, D. A., Bingham, G. E. & Kercher, J. R. 1985. Estimating the direct effect of CO2 on soybean yield. J. Environ. Man. 20: 51–62.Google Scholar
  64. King, K. M. & Greer, D. H. 1986. Effects of carbon dioxide enrichment and soil water on maize. Agron. J. 78: 515–521.Google Scholar
  65. Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Biosci. 31: 29–33.Google Scholar
  66. Krupa, S. V. & Kickert, R. N. 1989. The greenhouse effect: impact of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation. Environ. Pollut. 61: 263–393.Google Scholar
  67. Lemon, E. R. (ed). 1983. CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. AAAS Selected Symposium 84. Westview Press, Boulder, Co. 280 pp.Google Scholar
  68. Lincoln, D. E., Sionit, N. & Strain, B. R. 1984. Growth and feeding responses ofPseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ. Entomol. 13: 1527–1530.Google Scholar
  69. Masle, J., Farquhar, G. D. & Gifford, R. M. 1990. Growth and carbon economy of wheat seedlings as affected by soil resistance to penetration and ambient partial pressure of CO2. Aust. J. Plant Physiol. 17: 445–487.Google Scholar
  70. Mauney, J. R., Guinn, K. E., Fry, E. & Hesketh, J. D. 1979. Correlation of photosynthetic carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower and sorghum. Photosyn. 13: 260–266.Google Scholar
  71. Morison, J. I. L. 1988. Effect of increasing atmospheric CO2 on plants and their responses to other pollutants, climatic and soil factors. Aspect. App. Biol. 17: 113–122.Google Scholar
  72. Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell & Environ. 8: 467–474.Google Scholar
  73. Morison, J. I. L. & Gifford, R. M. 1984a. Plant growth and water use with limited water supply in high CO2 concentrations. I. Leaf area, water use and transpiration. Aust. J. Plant Physiol. 11: 361–374.Google Scholar
  74. Morison, J. I. L. & Gifford, R. M. 1984b. Plant growth and water use with limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Aust. J. Plant Physiol. 11: 375–384.Google Scholar
  75. Mortensen, L. M. 1987. Review: CO2 enrichment in greenhouses. Crop responses. Sci. Hort. 33: 1–25.Google Scholar
  76. Mortensen, L. M. & Ulsaker, R. 1985. Effect of CO2 concentration and light levels on growth, flowering and photosynthesis ofBegonia x hiemalis fotsch. Sci. Hort. 27: 133–141.Google Scholar
  77. Newman, J. E. 1989. The direct and indirect impacts of climate change on crop production. In: Proceedings for agricultural science centennial. pp. 101–129. Central Agric. Expt. Sta., Steinkjer, Norway. August 9–11, 1989.Google Scholar
  78. Osbrink, W. L. A., Trumble, J. T. & Wagner, R. E. 1987. Host suitability ofPhaseolus lunata forTrichoplusia ni (Lepidoptera: Noctuidae) in controlled carbon dioxide atmospheres. Environ. Entomol. 16: 639–644.Google Scholar
  79. Owensby, C. E., Coyne, P. I. & Allen, L. M.1989. I. Rangeland-Plant response to elevated CO2. II. Large-Chamber system. Series 054, Response of vegetation to carbon dioxide. Office of Energy Research, U.S. Dept. of Energy, Washington, DC. 42 pp.Google Scholar
  80. Parry, M. 1990. Climate change and world agriculture. Earthscan Pub. Ltd., London, 157 pp.Google Scholar
  81. Patterson, D. T. & Flint, E. P. 1990. Implications of increasing CO2 and climate change for plant communities and competition in natural and managed ecosystems. In: Kimball, B. A., Rosenberg, N. J. & AllenJr., L. H. (eds), Impact of CO2 trace gases, and climate change on global agriculture. ASA Special Publication No. 53. pp. 83–110. Am. Soc. Agron., Madison, WI.Google Scholar
  82. Patterson, D. T. & Flint, E. P. 1982. Interacting effects of CO2 and nutrient concentration. Weed Sci. 30: 389–394.Google Scholar
  83. Patterson, D. T., Highsmith, M. T. & Flint, E. P. 1988. Effects of temperature and CO2 concentration on the growth of cotton (Gossypium hirsutum), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). Weed Sci. 36: 751–757.Google Scholar
  84. Pendleton, D. F. & van, Dyne, G. M. 1982. Research issues in grazinglands under changing climate. Carbon dioxide effects research and assessment program 013. Vol. II, Part 16. Environmental and social consequences of a possible CO2-induced climate change. Dept. of Energy, Washington, DC. DOE/EV/10019–16. 43 pp.Google Scholar
  85. Potvin, C. 1985. Amelioration of chilling effects by CO2 enrichment. Physiol. Veg. 23: 345–352.Google Scholar
  86. Prior, S. A., Rogers, H. H., Sionit, N. & Patterson, R. P. 1991. Effects of elevated atmospheric CO2 on water relations of soybean. Agric., Ecosystems & Environ. 35: 13–25.Google Scholar
  87. Prudhomme, T. I., Oechel, W. C., Hastings, S. J. & Lawrence, W. T. 1984. Net ecosystem gas exchange at ambient and elevated CO2 concentrations in the tussock tundra at Tolik Lake, Alaska: An evaluation of methods and initial results. In: McBeath, J. H. (ed), Potential effects of carbon dioxide induced climatic changes in Alaska. No. 8–31. pp. 155–162. Univ. of Alaska, Fairbanks, AK, USA.Google Scholar
  88. Radin, J. W., Kimball, B. A., Hendrix, D. L. & Mauney, J. R. 1987. Photosynthesis of cotton plants exposed to elevated levels of CO2 in the field. Photosyn. Res. 12: 191–203.Google Scholar
  89. Reardon, J. C., Lambert, J. R. & Acock, B. 1990. The influence of carbon dioxide enrichment on the seasonal patterns of nitrogen fixation in soybeans. Series 016, Response of vegetation to carbon dioxide. Office of Energy Research, U.S. Dept. Energy, Washington, DC. 94 pp.Google Scholar
  90. Reddy, V. R., Acock, B. & Acock, M. C. 1989a. Seasonal carbon and nitrogen accumulation in relation to net carbon dioxide exchange in a carbon dioxide-enriched soybean canopy. Agron. J. 81: 78–83.Google Scholar
  91. Reddy, V. R., Baker, D. N. & McKinion, J. M. 1989b. Analysis of effects of atmospheric carbon dioxide and ozone on cotton yield trends. J. Environ. Qual. 18: 427–432.Google Scholar
  92. Reynolds, J. F. & Acock, B. 1985a. Modelling approaches for evaluating vegetation responses to carbon dioxide concentration. In: Strain, B. R. & Cure, J. D. (eds), Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238. pp. 33–51. Office of Energy Research, U.S. Dept. of Energy. Washington, DC.Google Scholar
  93. Reynolds, J. F. & Acock, B. 1985b. Predicting the response of plants to increasing carbon dioxide: a critique of plant growth models. Ecol. Model. 29: 107–129.Google Scholar
  94. Rogers, H. H., Bingham, G. E., Thomas, J. F., Smith, J. M., Israel, D. W. & Surano, K. A. 1982. Effects of long-term CO2 concentrations on field-grown crops and trees. In: Brown, S. (ed), Global dynamics of biospheric carbon. pp. 9–45. U.S. Dept. of Energy, Washington, DC.Google Scholar
  95. Rogers, H. H., Jeffries, H. E., Stahel, E. P., Heck, W. W., Ripperton, L. A. & Witherspoon, H. E. 1977. Measuring air pollutant uptake by plants: a direct kinetic technique. J. Air Poll. Control Assoc. 27: 1192–1197.Google Scholar
  96. Rogers, H. H., Peterson, C. M., McCrimmon, J. N. & Cure, J. D. 1987. Response of soybean roots to elevated atmospheric carbon dioxide. Agron. Abst. pp. 100.Google Scholar
  97. Rogers, H. H., Prior, S. A. & O'Neill, E. G. 1989. Response of roots in field grown cotton subjected to free air CO2 enrichment (FACE). Am. Soc. Plant Physiol. Abstr. Adden. 1: 4.Google Scholar
  98. Rogers, H. H., Sionit, N., Cure, J. D., Smith, J. M. & Bingham, G. E. 1984. Influence of elevated carbon dioxide on water relations of soybeans. Plant Physiol. 74: 233–238.Google Scholar
  99. Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M. & Surano, K. A. 1983a. Responses of selected plant species to elevated CO2 in the field. J. Environ. Qual. 12: 569–574.Google Scholar
  100. Rogers, H. H., Heck, W. W. & Heagle, A. S. 1983b. A field technique for the study of plant responses to elevated carbon dioxide concentrations. J. Air Pollut. Contr. Assoc. 33: 42–44.Google Scholar
  101. Rogers, H. H., Thomas, J. F. & Bingham, G. E. 1983c. Response of agronomic and forest species to elevated atmospheric carbon dioxide. Sci. 220: 428–429.Google Scholar
  102. Rosenberg, N. J. 1981. The increasing CO2 concentration in the atmosphere and its implication on agricultural productivity. I. Effects on photosynthesis, transpiration and water use efficiency. Clim. Change 3: 265–279.Google Scholar
  103. Rosenberg, N. J. 1982. The increasing carbon dioxide concentration in the atmosphere and its implication on agricultural productivity. II. Effects through carbon dioxide induced climatic change. Clim. Change 4: 239–254.Google Scholar
  104. Rosenberg, N. J., Kimball, B. A., Martin, P. & Cooper, C. F. 1990. From climate and CO2 enrichment to evapotranspiration. In: Waggoner, P. E. (ed), Climate change in U.S. water resources. pp. 151–175. John Wiley and Sons, NY.Google Scholar
  105. Rowland-Bamford, A., Nordenbrock, C., Baker, J. T., Bowes, G. & AllenJr., L. H. 1990. Changes in stomatal density in rice grown under various CO2 regimes with natural solar irradiance. Environ. Exper. Bot. 2: 175–180.Google Scholar
  106. Rundel, P. W., Ehleringer, J. R. & Nagy, K. A. (eds). 1989. Stable isotopes in ecological research. Springer-Verlag, NY. 525 pp.Google Scholar
  107. Sasek, T. W. & Strain, B. R. 1989. Effects of carbon dioxide enrichment on the expansion and size of kudzu (Pueraria lobata) leaves. Weed Sci. 37: 23–28.Google Scholar
  108. Schonfeld, M., Johnson, R. C. & Ferris, D. M. 1989. Development of winter wheat under increased atmospheric CO2 and water limitation at tillering. Crop. Sci. 29: 1093–1086.Google Scholar
  109. Schwarz, M. & Gale, J. 1984. Growth response to salinity at high levels of carbon dioxide. J. Exp. Bot. 35: 193–196.Google Scholar
  110. Sinclair, T. R., Johnson, M. N., Drake, G. M. & Van, Houtte, R. C. 1979. Mobile laboratory for continuous, long-term gas exchange measurements of 39 leaves. Photosyn. 4: 446–453.Google Scholar
  111. Sionit, N. 1983. Response of soybean to two levels of mineral nutrition in CO2-enriched atmosphere. Crop Sci. 23: 329–333.Google Scholar
  112. Sionit, N., Hellmers, H. & Strain, B. R. 1982. Interaction of atmospheric carbon dioxide enrichment and irradiance on plant growth. Agron. J. 74: 721–725.Google Scholar
  113. Sionit, N., Hellmers, H. & Strain, B. R. 1980. Growth and yield of wheat under carbon dioxide enrichment and water stress conditions. Crop Sci. 20: 687–690.Google Scholar
  114. Sionit, N., Rogers, H. H., Bingham, G. E. & Strain, B. R. 1984. Photosynthesis and stomatal conductance with CO2-enrichment of container-and field-grown soybeans. Agron. J. 76: 447–451.Google Scholar
  115. Sionit, N., Mortensen, D. A., Strain, B. R. & Hellmers, H. 1981a. Growth responses of wheat to carbon dioxide enrichment with different levels of mineral nutrition. Agron. J. 73: 1023–1027.Google Scholar
  116. Sionit, N., Strain, B. R. & Beckford, H. A. 1981b. Environmental controls on the growth and yield of okra. I. Effects of temperature and carbon dioxide enrichment at cool temperature. Crop Sci. 21: 885–888.Google Scholar
  117. Sionit, N., Strain, B. R. & Hellmers, H. 1981c. Effects of different concentrations of atmospheric CO2 on growth and yield components of wheat. J. Agric. Sci. 79: 335–339.Google Scholar
  118. Sionit, N., Strain, B. R., Hellmers, H. & Kramer, P. J. 1981d. Effects of atmospheric carbon dioxide concentration and water stress on water relations of wheat. Bot. Gaz. 142: 191–196.Google Scholar
  119. Smit, B., Ludlow, L. & Brklacich, M. 1988. Implications of a global climatic warming for agriculture: a review and appraisa. J. Environ. Qual. 17: 519–527.Google Scholar
  120. Smith, J. B. & Tirpak, D. A. (eds). 1989a. The potential effects of global climate change on the United States. Appendix C—Agriculture, Vols. I & II. EPA, Office of Policy, Planning and Evaluation, Washington, DC.Google Scholar
  121. Smith, J. B. & Tirpak, D. A. (eds). 1989b. The potential effects of global climate change on the United States. Report to Congress. EPA, Office of Policy, Planning and Evaluation, Washington, DC. 413 pp.Google Scholar
  122. Strain, B. R. 1987. Direct effect of increasing atmospheric CO2 on plants and ecosystems. Trend. Ecol. Evol. 2: 18–21.Google Scholar
  123. Strain, B. R. & Cure, J. D. (eds) 1985. Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238. Office of Energy Research, U.S. Dept. of Energy. Washington, DC. 286 pp.Google Scholar
  124. Strain, B. R. & Cure, J. D. 1986. Direct effect of atmospheric CO2 on plants and ecosystems: a bibliography with abstracts. ORNL/CDIC-13. The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. 1032 entires.Google Scholar
  125. Surano, K. A. & Shinn, J. H. 1984. A field study of elevated atmospheric CO2 effects on yield, water use efficiency, and dry matter partitioning inZea mays. UCRL Preprint 90771. Lawrence Livermore National Laboratory, Livermore, CA. 30 pp.Google Scholar
  126. Thomas, J. F. & Harvey, C. N. 1983. Leaf anatomy of four species grown under continuous CO2 enrichment. Bot. Gaz. 144: 303–309.Google Scholar
  127. Valle, R., Mishoe, J. W., Jones, J. W. & AllenJr., L. H. 1985. Transpiration rate and water use efficiency of soybean leaves adapted to different CO2 environments. Crop Sci. 25: 477–482.Google Scholar
  128. Vu, J. C. V., AllenJr., L. H. & Bowes, G. 1989. Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO2 enrichment. Environ. & Exper. Bot. 29: 141–147.Google Scholar
  129. Warrick, R. A. 1988. Carbon dioxide, climatic change and agriculture. The Geographical J. 154: 221–223.Google Scholar
  130. Waggoner, P. E. 1984. Agriculture and carbon dioxide. Amer. Sci. 72: 179–184.Google Scholar
  131. White, M. R. (ed). 1985. Characterization of information requirements for studies of CO2 effects: Water Resources, agriculture, fisheries, forests and human health. DOE/ER. 0236. Office of Energy Research, U.S. Dept. of Energy, Washington, DC. 235 pp.Google Scholar
  132. Wittwer, S. H. 1988. The greenhouse effect. No. 163. Carolina Biological Supply Co., Burlington, NC. 16 pp.Google Scholar
  133. Wittwer, S. H. 1985. Carbon dioxide levels in the biosphere: Effects on plant productivity. CRC Press 2: 171–198.Google Scholar
  134. Wong, S. C. 1980. Effects of elevated partial pressures of CO2 on rate of CO2 assimilation and water use efficiency in plants. In: Pearman, G. I. (ed), Carbon dioxide and climate: Australian research. pp. 159–166. Australian Academy of Science, Canberra.Google Scholar
  135. Yoshida, S. 1973. Effects of CO2 enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.). Soil Sci. Plant Nutr. 19: 311–316.Google Scholar
  136. Zangerl, A. R. & Bazzaz, F. A. 1984. The response of plants to elevated CO2. II. Competitive interactions between annual plants under varying light and nutrients. Oecologia 62: 412–417.Google Scholar
  137. Zeroni, M. & Gale, J. 1989. Response of ‘Sonia’ roses to salinity at three levels of ambient CO2. J. Hort. Sci. 64: 503–511.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • H. H. Rogers
    • 1
    • 2
  • R. C. Dahlman
    • 3
  1. 1.National Soil Dynamics LaboratoryARS-USDAUSA
  2. 2.Auburn UniversityAuburnUSA
  3. 3.Environmental Sciences Research DivisionU.S. Department of EnergyWashington, DCUSA

Personalised recommendations