, Volume 104, Issue 1, pp 47–62 | Cite as

Plant water relations and the effects of elevated CO2: a review and suggestions for future research

  • Melvin T. Tyree
  • John D. Alexander


Increased ambient carbon dioxide (CO2) has been found to ameliorate water stress in the majority of species studied. The results of many studies indicate that lower evaporative flux density is associated with high CO2-induced stomatal closure. As a result of decreases in evaporative flux density and increases in net photosynthesis, also found to occur in high CO2 environments, plants have often been shown to maintain higher water use efficiencies when grown at high CO2 than when grown in normal, ambient air. Plants grown at high CO2 have also been found to maintain higher total water potentials, to increase biomass production, have larger root-to-shoot ratios, and to be generally more drought resistant (through avoidance mechanisms) than those grown at ambient CO2 levels. High CO2-induced changes in plant structure (i.e., vessel or tracheid anatomy, leaf specific conductivity) may be associated with changes in vulnerability to xylem cavitation or in environmental conditions in which runaway embolism is likely to occur. Further study is needed to resolve these important issues. Methodology and other CO2 effects on plant water relations are discussed.


Carbon dioxide Water relations Water use efficiency Water potential Transpiration Stomatal movement Growth 



net photosynthesis


ambient [CO2]


internal [CO2]


evaporative flux density


leaf conductance


stomatal conductance


leaf specific conductivity


infrared gas analyzer


leaf area index


photosynthetically active radiation


total plant water potential


soil water potential


solute potential


turgor pressure potential


xylem pressure potential


relative humidity

R : S

root to shoot ratio


relative water content


specific leaf area


specific leaf weight




soil water content


vapor pressure deficit


water use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akita, S. & Moss, D. N. 1972. Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light. Crop Sci. 12: 789–793.Google Scholar
  2. Arnone, J. A. & Gordon, J. C. 1990. Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings ofAlnus rubra Bong. New Phytol. 116: 55–66.Google Scholar
  3. Barr, A. G., King, K. M., Thurtell, G. W. & Graham, M. E. D. 1990. Humidity and soil water influence the transpiration response of Maize to CO2 enrichment. Can. J. Plant. Sci. 70: 941–948.Google Scholar
  4. Beadle, C. L., Jarvis, P. G. & Neilson, R. E. 1979. Leaf conductance as related to xylem water potential and carbon dioxide concentration in Sitka spruce. Physiol. Plant. 45: 158–166.Google Scholar
  5. Byrne, G. F., Begg, J. E., & Hansen, G. K. 1977. Cavitation and resistance to water flow in plant roots. Agric. Meteorol. 18: 21–25.Google Scholar
  6. Carlson, R. W. & Bazzaz, F. A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration, and water use efficiency of plants. In: Singh, J. J. & Deepak, A. (eds). Environmental and climatic impact of coal utilization pp. 609–623. Academic Press, New York.Google Scholar
  7. Chaudhuri, U. N., Kirkham, M. B., Kanemasu, E. T. 1990. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Sci. 30: 853–857.Google Scholar
  8. Cheung, Y. N. S., Tyree, M. T., Dainty, J. 1976. Some possible sources of error in determining bulk elastic moduli and other parameters from pressure-volume curves of shoots and leaves. Can. J. Bot. 54: 758–765.Google Scholar
  9. Conroy, J., Barlow, E. W. R. & Bevege, D. I. 1986. Response ofPinus radiata seedlings to carbon dioxide enrichment at different levels of water and phosphorous: growth, morphology and anatomy. Ann. Bot. 57: 165–177.Google Scholar
  10. Conroy, J. P., Küppers, M., Küppers, B., Virgona, J. & Barlow, E. W. R. 1988a. The influence of CO2 enrichment, phosphorous deficiency and water stress on the growth, conductance and water use ofPinus radiata D. Don. Plant, Cell. & Environ. 11: 91–98.Google Scholar
  11. Conroy, J. P., Virgona, J. M., Smillie, R. M. & Barlow, E. W. 1988b. Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought. Plant Physiol. 86: 1108–1115.Google Scholar
  12. Conroy, J. P., Milham, P. J., Mazur, M. & Barlow, E. W. R. 1990. Growth, dry weight partitioning and wood properties of Pinus radiata D. Don after 2 years of CO2 enrichment. Plant, Cell & Environ. 13: 329–337.Google Scholar
  13. Dahlman, R. C., Strain, B. R. & Rogers, H. H. 1985. Research on the response of vegetation to elevated atmospheric carbon dioxide. J. Environ. Qual. 14: 1–8.Google Scholar
  14. Del, Castillo, D., Acock, B., Reddy, V. R. & Acock, M. C. 1989. Elongation and branching of roots on soybean plants in a carbon dioxide-enriched environment. Agron. J. 81: 692–695.Google Scholar
  15. Dixon, M. A., Butt, J. A., Murr, D. P., Tsujita, M. J. 1988. Water relations of cut greenhouse roses: the relationship between stem water potential, hydraulic conductance and cavitation. Sci Hort. 36: 109–118.Google Scholar
  16. Dixon, M. A., Tyree, M. T. 1984. A new stem hygrometer, corrected for temperature gradients and calibrated against the pressure bomb. Plant Cell & Environ. 7: 693–697.Google Scholar
  17. Downton, W. J. S., Grant, W. J. R. & Chacko, E. K. 1990. Effects of elevated carbon dioxide on the photosynthesis and early growth of mangosteen (Garcinia mangostana L.). Sci. Hort. 44: 215–225.Google Scholar
  18. Frederick, J. R., Alm, D. M., Hesketh, J. D. & Below, F. E. 1990. Overcoming drought-induced decreases in soybean leaf photosynthesis by measuring with CO2-enriched air. Photo. Res. 25: 49–57.Google Scholar
  19. Goudriaan, J. & de, Ruiter, H. E. 1983. Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorous supply. 1. Dry matter, leaf area and development. Neth. J. Agric. Sci. 31: 157–169.Google Scholar
  20. den, Hertog, J., Stulen, I., Lambers, H. 1992. Assimilation, respiration and allocation of carbon in Plantago major as affected by atmospheric CO2 levels: a case study. Vegetatio 104/105: 369–378.Google Scholar
  21. Higginbotham, K. O., Mayo, J. M., L'Hirondelle, S. & Krystofiak, D. K. 1985. Physiological ecology of lodgepole pine (Pinus contorta) in an enriched CO2 environment. Can. J. For. Res. 15: 417–421.Google Scholar
  22. Hollinger, D. Y. 1987. Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. Tree Physiol. 3: 193–202.Google Scholar
  23. Idso, S. B. 1988. Three phases of plant response to atmospheric CO2 enrichment. Plant Physiol. 87: 5–7.Google Scholar
  24. Idso, S. B., Kimball, B. A., Anderson, M. G. & Szarek, S. R. 1986. Growth response of a succulent plant,Agave vilmoriniana, to elevated CO2. Plant Physiol. 80: 796–797.Google Scholar
  25. Idso, S. B., Kimball, B. A. & Mauney, J. R. 1987. Atmospheric carbon dioxide enrichment effects on cotton midday foliage temperature: Implications for plant water use efficiency. Agron. J. 79: 667–672.Google Scholar
  26. Idso, S. B., Kimball, B. A. & Mauney, J. R. 1988. Effects of atmospheric CO2 enrichment on root: shoot ratios of carrot, radish, cotton and soybean. Agric. Ecosystems Environ. 21: 293–299.Google Scholar
  27. Imai, K. & Coleman, D. F. 1983. Elevated atmospheric partial pressure of carbon dioxide and dry matter production of konjak (Amorphophallus konjak K. Koch). Photo. Res. 4: 331–336.Google Scholar
  28. Jones, P., Allen, L. H., Jones, J. W., Boote, K. J. & Campbell, W. J. 1984. Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide enrichment. Agron. J. 76: 633–637.Google Scholar
  29. Khan, M. A. H. & Madsen, A. 1986. Leaf diffusive resistance and water economy in carbon dioxide-enriched rice plants. New Phytol. 104: 215–223.Google Scholar
  30. Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31: 29–33.Google Scholar
  31. Kramer, P. J. 1983. Water relations of plants. Academic press, Orlando, San Diego, New York.Google Scholar
  32. Leadley, P. W., Reynolds, J. A., Thomas, J. F. & Reynolds, J. F. 1987. Effects of CO2 enrichment on internal leaf surface area in soybeans. Bot. Gaz. 148: 137–140.Google Scholar
  33. Luxmoore, R. J., O'Neill, E. G., Ells, J. M. & Rogers, H. H. 1986. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. J. Environ. Qual. 15: 244–251.Google Scholar
  34. Marks, S. & Strain, B. R. 1989. Effects of drought and CO2 enrichment on competition between two old-field perennials. New Phytol. 111: 181–186.Google Scholar
  35. Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environ. 8: 467–474.Google Scholar
  36. Morison, J. I. L. & Gifford, R. M. 1983. Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol. 71: 789–796.Google Scholar
  37. Nijs, I., Impens, I. & Behaeghe, T. 1988. Effects of rising atmospheric carbon dioxide concentration on gas exchange and growth of perennial ryegrass. Photosynthetica 22: 44–50.Google Scholar
  38. Nijs, I., Impens, I. & Behaeghe, T. 1989a. Effects of long-term atmospheric CO2 concentration onLolium perenne andTrifolium repens canopies in the course of a terminal drought stress period. Can. J. Bot. 67: 2720–2725.Google Scholar
  39. Nijs, I., Impens, I. & Behaeghe, T. 1989b. Leaf and canopy responses ofLolium perenne to long-term elevated atmospheric carbon-dioxide concentration. Planta 177: 312–320.Google Scholar
  40. Norby, R. J. & O'Neill, E. G. 1989. Growth dynamics and water use of seedlings ofQuercus alba L. on CO2-enriched atmospheres. New Phytol. 111: 491–500.Google Scholar
  41. Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. 1986. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition ofQuercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.Google Scholar
  42. Oberbauer, S. F., Strain, B. R. & Fetcher, N. 1985. Effect of CO2-enrichment on seedling physiology and growth of two tropical tree species. Physiol. Plant. 65: 352–356.Google Scholar
  43. Oechel, W. C. & Strain, B. R. 1985. 6. Native species responses to increased atmospheric carbon dioxide concentration. In: Strain, B. R. & Cure, J. D. (eds), Direct effects of increasing CO2 on vegetation. pp. 117–154, United States Dept. of Energy, DOE/ER-0238.Google Scholar
  44. Pallas, J. E.jr. 1965. Transpiration and stomatal opening with changes in carbon dioxide content of the air. Science 147: 169–171.Google Scholar
  45. Peñuelas, J. & Matamala, R. 1990. Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. J. Exp. Bot. 41: 1119–1124.Google Scholar
  46. Reekie, E. G. & Bazzaz, F. A. 1989. Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO2. Oecologia 79: 212–222.Google Scholar
  47. Rogers, H. H. 1983. Response of agronomic and forest species to elevated atmospheric carbon dioxide. Science 220: 428–429.Google Scholar
  48. Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M. & Surano, K. A. 1983. Responses of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual. 12: 569–574.Google Scholar
  49. Rogers, H. H., Sionit, N., Cure, J. D., Smith, J. M. & Bingham, G. E. 1984. Influence of elevated carbon dioxide on water relations of soybeans. Plant Physiol. 74: 233–238.Google Scholar
  50. Rosenberg, N. J. 1981. The increasing CO2 concentration in the atmosphere and its implication on agricultural productivity. Climatic Change 3: 265–279.Google Scholar
  51. Rozema, J., Dorel, F., Janissen, R., Lenssen, E., Broekman, R., Arp, W. & Drake, B. G. 1991A. Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt marsh grass species. Aquat. Bot. 39: 45–55.Google Scholar
  52. Rozema, J., Lensen, G. M., Arp, W. J. & van de, Staaij, J. W. M. 1991B. Global change, the impact of the greenhouse effect (atmospheric CO2 enrichment) and the increased UV-B radiation responses to environmental stresses, pp. 220–231. Kluwer Academic Publications, The Netherlands.Google Scholar
  53. Rozema, J. 1993. Responses to atmospheric CO2 enrichment: interactions with some soil and atmospheric conditions. Vegetatio 104/105: 173–190.Google Scholar
  54. Sasek, T. W. & Strain, B. R. 1989. Effects of carbon dioxide enrichment on the expansion and size of kudzu (Pueraria lobata) leaves. Weed Sci. 37: 23–28.Google Scholar
  55. Sionit, N. & Patterson, D. T. 1985. Responses of C4 grasses to atmospheric CO2 enrichment. II. Effect of water stress. Crop Sci. 25: 533–537.Google Scholar
  56. Sionit, N., Strain, B. R., Hellmers, H. & Kramer, P. J. 1981. Effects of atmospheric CO2 concentration and water stress on water relations of wheat. Bot. Gaz. 142: 191–196.Google Scholar
  57. Sionit, N., Strain, B. R., Hellmers, H., Riechers, G. H. & Jaeger, C. H. 1985. Long-term atmospheric CO2 enrichment affects the growth and development ofLiquidambar styraciflua andPinus taeda seedlings. Can. J. For. Res. 15: 468–471.Google Scholar
  58. Sperry, J. S., Tyree, M. T., Donnelly, J. A. 1988. Vulnerability of xylem to embolism in a mangrove vs an inland species of Rizophoraceae. Physiol. Plant. 74: 276–283.Google Scholar
  59. Sperry, J. S., Tyree, M. T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581–587.Google Scholar
  60. Sperry, J. S., Tyree, M. T. 1990. Water-stress-induced xylem embolism in three species of conifers. Plant, Cell & Environ. 13: 427–436.Google Scholar
  61. Szarek, S. R., Holthe, P. A. & Ting, I. P. 1987. Minor physiological response to elevated CO2 by the CAM plantAgave vilmoriniana. Plant Physiol. 83: 938–940.Google Scholar
  62. Teskey, R. O., Fites, J. A., Samuelson, L. J. & Bongarten, B. C. 1986. Stomatal and nonstomatal limitations to net photosynthesis inPinus taeda L. under different environmental conditions. Tree Physiol. 2: 131–142.Google Scholar
  63. Thomas, J. F. & Harvey, C. N. 1983. Leaf anatomy of four species grown under continuous CO2 enrichment. Bot. Gaz. 144: 303–309.Google Scholar
  64. Tolley, L. C. & Strain, B. R. 1984a. Effects of CO2 enrichment on growth ofLiquidambar styraciflua andPinus taeda seedlings under different irradiance levels. Can. J. For. Res. 14: 343–350.Google Scholar
  65. Tolley, L. C. & Strain, B. R. 1984b. Effects of CO2 enrichment and water stress on growth ofLiquidambar styraciflua andPinus taeda seedlings. Can. J. Bot. 62: 2135–2139.Google Scholar
  66. Tyree, M. T. 1976. Negative turgor pressure in plant cells: fact or fallacy? Can. J. Bot. 54: 2738–2746.Google Scholar
  67. Tyree, M. T. 1988. A dynamic model for water flow in a single tree: evidence that models must account for hydraulic architecture. Tree Physiol. 4: 195–217.Google Scholar
  68. Tyree, M. T. 1989. Cavitation in trees and the hydraulic sufficiency of woody stems. Annales des Sciences Forestières 46 (suppl.): 330–337.Google Scholar
  69. Tyree, M. T. & Dixon, M. A. 1986. Water stress induced cavitation and embolism in some woody plants. Physiol. Plant. 66: 397–405.Google Scholar
  70. Tyree, M. T. & Ewers, F. W. 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119: 345–360.Google Scholar
  71. Tyree, M. T., Fiscus, E. L., Wullschleger, S. D. & Dixon, M. A. 1986. Detection of xylem cavitation in corn under field conditions. Plant Physiol. 82: 597–599.Google Scholar
  72. Tyree, M. T. & Jarvis, P. G. 1982. Water in tissues and cells. In: Nobel, P. S., Osmond, C. B., Ziegler, H., (eds) Encyclopedia of Plant Physiology (N. S.) Springer-Verlag, Berlin, Heidelberg, New York. vol 12B pp 37–77.Google Scholar
  73. Tyree, M. T., MacGregor, M. E., Petrov, A., Upenieks, M. I. 1978. A comparison of systematic errors between the Richards and Hammel methods of measuring tissue-water relations parameters. Can. J. Bot. 56: 2153–2161.Google Scholar
  74. Tyree, M. T., Richter, H. 1981. Alternative methods of analyzing water potential isotherms; some cautions and clarifications. I. The impact of non-ideality and of some experimental errors. J. Exp. Bot. 32: 643–653.Google Scholar
  75. Tyree, M. T., Richter, H. 1982. Alternate methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Can. J. Bot. 60: 911–916.Google Scholar
  76. Tyree, M. T., Snyderman, D. A., Wilmot, T. R., & Machado, J. L. 1991. Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): Data models and a comparison to two temperate species (Acer saccharum andThuja occidentalis). Plant Physiol. 96: 1105–1113.Google Scholar
  77. Tyree, M. T. & Sperry, J. S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress: Answers from a model. Plant Physiol. 88: 574–580.Google Scholar
  78. Tyree, M. T. & Sperry, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Phys. Mol. Bio., 40: 19–38.Google Scholar
  79. Tyree, M. T. & Sperry, J. S. 1989b. Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant, Cell and Environ. 12: 371–382.Google Scholar
  80. Tyree, M. T. & Wilmot, T. R. 1990. Errors in the calculation of evaporation and leaf conductance in steady-state porometry: The importance of accurate measurement of leaf temperature. Can. J. For. Res. 20: 1031–1035.Google Scholar
  81. Tyree, M. T. & Yianoulis, P. 1980. The site of water evaporation from substomatal cavities, liquid path resistances, and hydroactive stomatal closure. Ann. Bot. 46: 175–193.Google Scholar
  82. Wray, S. M. & Strain, B. R. 1986. Response of two old field perennials to interactions of CO2 enrichment and drought stress. Amer. J. Bot. 73: 1486–1491.Google Scholar
  83. Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. Oecologia 44: 68–74.Google Scholar
  84. Woodward, F. I. 1987. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327: 617–618.Google Scholar
  85. Wulff, R. D. & Strain, B. R. 1982. Effects of CO2 enrichment on growth and photosynthesis inDesmodium paniculatum. Can. J. Bot., 60: 1084–1091.Google Scholar
  86. Yianoulis, P, Tyree, M. T. 1984. A model to investigate the effects of evaporative cooling on the pattern of evaporation in sub-stomatal cavities. Ann. Bot. 53: 189–206.Google Scholar
  87. Zimmerman, M. H. & Brown, C. L. 1971. Trees structure and function. Springer-Verlag, New York, Heidelberg, Berlin.Google Scholar
  88. Ziska, L. H., Hogan, K. P., Smith, A. P. & Drake, B. G. 1991. Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide Oecologia 86: 383–389.Google Scholar
  89. CollectingPseudobomax branches for measurement of embolimsm and cavitation. (Barro Colorado Island, Panama).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Melvin T. Tyree
    • 1
    • 2
  • John D. Alexander
    • 1
    • 2
  1. 1.Northeastern Forest Experiment StationU.S. Forest ServiceBurlingtonUSA
  2. 2.Department of BotanyUniversity of VermontBurlingtonUSA

Personalised recommendations