Acta Biotheoretica

, Volume 31, Issue 1, pp 45–68 | Cite as

The endoeytobiotic cell theory and the periodic system of cells

  • W. Schwemmler


According to scientific procedure, each discipline first describes the phenomena of its research area, then analyzes them, and tinally categorizes them in a system. To date, biology has lacked such a system for its smallest building blocks, the cells. Although the theory of evolution explains certain central evolutionary mechanisms of the cell, there existed no generally accepted theory of the organization of the cell. The endoeytobiotic cell theory is suggested as a possible basis for a satisfying explanation of the structure, function, information, and evolution of the cell. Furthermore, a hypothetical periodic system of the cell is developed. This system consists of eight groups, including the ecological niches fermentation, respiration, photergy, and photosynthesis (each aerobic and anaerobic) and seven periods with increasing numbers of protein biosynthesis machineries (cytoplasma, mitochondria, plastids, endocytobionts). We find furthermore, a division according to typical animal or plant cells and between these two in fungus-like cells.


Plant Cell Building Block Research Area Ecological Niche Evolutionary Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, C.G. and Gaffal, K.P. (1979). Die räumliche Struktur von Mitochondrien und Plastiden. - Biologic in unserer Zeit 9 (2), pp. 45–51.Google Scholar
  2. Bonen, L. and Doolittle, W.F. (1975). On the prokaryotic nature of red algae chloroplasts. - Proc.Nat.Acad.Sci. U.S.A. 72 (6), pp. 2310–2314.Google Scholar
  3. Bonen, L., Cunningham, R.S., Gray, M.W. and Doolittle, W.F. (1977). Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. - Nucleic Acids Res. 4, pp. 663–671.Google Scholar
  4. Broda, E. (1975). The evolution of the bioenergetic processes. - Oxford, Pergamon Press, ix + 211 pp.Google Scholar
  5. Czihak, G., Langer, H. and Ziegler, H. (1976). Biologie — ein Lehrbuch für Studenten der Biologie. - Berlin, Heidelberg, New York, Springer, 861 pp.Google Scholar
  6. Doolittle, W.F. and Bonen, L. (1981). Molecular sequence data indicating an endosymbiotic origin for plastids. In: Fredrick, J.F., ed. Origins and evolution of eukaryotic intracellular organelles. — N.Y. Acad. Sci. 361, 504 pp.Google Scholar
  7. Grimstone, A.V. (1964). The structure of Mixotricha and its associated microorganisms. - Proc.Br.Royal Soc. (London) 159, pp. 668–686.Google Scholar
  8. Hartmann, H. (1975). The centriol and the cell. - J. theor. Biol. 51, pp. 501–509.Google Scholar
  9. Kaplan, R.W. (1978). Der Ursprung des Lebens. Biogenetik, ein Forschungsgebiet heutiger Naturwissenschaft, 2. Auf. - Stuttgart, Thieme, 253 pp.Google Scholar
  10. Körner, H. (1969). Die embryonale Entwicklung der symbiontenführenden Organe von Euscelis plebejus (Homoptera, Cicadina). - Oecologia 2, pp. 319–346.Google Scholar
  11. Louis, C. and Laporte, M. (1969). Caractères ultrastructuraux et différenciation des formes migratrices des symbiotes chez Euscelis plebejus (Homoptera, Jassidae). - Ann.Soc.Ent. 5, pp. 799–809.Google Scholar
  12. Margulis, L. (1970). Origin of eukaryotic cells. - New Haven, London, Yale University Press, 349 pp.Google Scholar
  13. Margulis, L. (1971). Symbiosis and evolution. - Am.Scient. 225 (2), pp. 48–54.Google Scholar
  14. Margulis, L. (1975). The microbes contribution to evolution. - BioSystems 7, pp. 266–292.Google Scholar
  15. Margulis, L. (1976). The genetic and evolutionary consequences of symbiosis. - Exp. Parasit. Rev. 39, pp. 277–349.Google Scholar
  16. Margulis, L., To, L. and Chase, D. (1978). Possible evolutionary significance of spirochetes. - Trans.Roy.Soc. Lond. (Ser. B) 204, pp. 189–198.Google Scholar
  17. Margulis, L. (1981). Symbiosis in cell evolution. - San Francisco, Freemann, xxiv + 419 pp.Google Scholar
  18. Nass, M.M.K. (1969). Uptake of isolated chloroplasts by mammalian cells. - Science 165, pp. 1128–1131.Google Scholar
  19. Parthier, B. (1975). Zur Evolution von Chloroplasten und Mitochondrien. Nova Acta Leopoldina NF, 42 (218), pp. 223–239.Google Scholar
  20. Parthier, B. (1979). Evolutionary aspects of gene expression-organization in macrocompartments. - In: Nover, L., Even, F. and Mothes, K., eds. Leopold. Symp. Cell Compartmentation and Metabolic Chanelling. - Jena / Amsterdam, Fischer/Elsevier.Google Scholar
  21. Pickett-Heaps, J. (1974). The evolution of mitosis and the eukaryotic condition. - BioSystems 6, pp. 37–48.Google Scholar
  22. Pickett-Heaps, J. (1975). Aspects of spindle evolution. - N.Y. Acad.Sci. 253, pp. 352–361.Google Scholar
  23. Remane, A. (1952). Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie and der Phylogenetik. - Leipzig, Geest und Portig, 400 pp.Google Scholar
  24. Schnepf, E. and Brown, R.M. (1971). On the relationships between endosymbiosis and the origin of plastids and mitochondria. - In: Reinert, J. and Ursprung, H., eds. Origin and continuity of cell organelles, Vol. 2. - Berlin, Heidelberg, New York, Springer, 342 pp.Google Scholar
  25. Schön, G. (1978). Mikrobiologie. - Freiburg, Basel, Wien, Herder, pp. 12–139.Google Scholar
  26. Schwartz, R.M. and Dayhoff, M.O. (1978). Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. - Science 199, pp. 395–403.Google Scholar
  27. Schwemmler, W. (1971). Intracellular symbionts: a new type of primitive prokaryotes. - Cytobiol. 3, pp. 427–429.Google Scholar
  28. Schwemmler, W. (1981). The periodic system of cells. Foundation of the endocytobiotic of leafhopper endosymbiont DNA. - Cytobiol. 10 (2), pp. 249–259.Google Scholar
  29. Schwemmler, W. (1978). Mechanismen der Zellevolution. Grundriss einer modernen Zelltheorie. - Berlin, New York, Walter de Gruyter, 275 pp.Google Scholar
  30. Schwemmler, W. and Herrmann, M. (1979). Oszillationen im Energiestoffwechsel von Wirt und Symbiont eines Zikadeneies. I. Analyse möglicher stoffwechselphysiologischer Korrelationen beider Systeme. - Cytobios 25, pp. 45–62.Google Scholar
  31. Schwemmler, W. and Herrmann, M. (1980). Oszillationen im Energiestoffwechsel von Wirt and Symbiont eines Zikadeneies. II. Analyse möglicher endogener Rhythmen beider Systeme. - Cytobios 27, pp. 193–208.Google Scholar
  32. Schwemmler, W. (1980). Endocytobiose: Modell zur molekularen Analyse von Circadianrhythmik, Eimusterbildung und Krebs. - Naturwiss. Rdschau. 33 (2), pp. 52–59.Google Scholar
  33. Schwemmler, W. and Schenk H.E.A., eds. (1980). Endocytobiology. Endosymbiosis and cell biology. A synthesis of recent research. - Berlin, New York, Walter de Gruyter, 1060 pp.Google Scholar
  34. Schwemmler, W. (1981). The periodic system of cells. Foundation of the endocytobiotic cell theory. — In preparation.Google Scholar
  35. Taylor, F.J.R. (1974). Implications and extensions of the serial endosymbiosis theory of the origin of the eukaryotes. - Taxon 23, pp. 229–258.Google Scholar
  36. Woese, C.R. and Fox, G.E. (1977). The concept of cellular evolution. - J. mol. Evol. 10, pp. 1–6.Google Scholar
  37. Tandler, R. and Hoppel, C.L. (1972). Mitochondria. - New York, London, Academic Press, 59 pp.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1982

Authors and Affiliations

  • W. Schwemmler
    • 1
  1. 1.Institut für Pflanzenphysiologie und ZellbiologieFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations