Journal of Atmospheric Chemistry

, Volume 12, Issue 3, pp 229–267 | Cite as

The role of clouds in tropospheric photochemistry

  • J. Lelieveld
  • P. J. Crutzen


We show that photochemical processes in the lower half of the troposphere are strongly affected by the presence of liquid water clouds. Especially CH2O, an important intermediate of CH4 (and of other hydrocarbon) oxidation, is subject to enhanced breakdown in the aqueous phase. This reduces the formation of HO x -radicals via photodissociation of CH2O in the gas phase. In the droplets, the hydrated form of CH2O, its oxidation product HCO2, and H2O2 recycle O2 radicals which, in turn, react with ozone. We show that the latter reaction is a significant sink for O3. Further O3 concentrations are reduced as a result of decreased formation of O3 during periods with clouds. Additionally, NO x , which acts as a catalyst in the photochemical formation of O3, is depleted by clouds during the night via scavenging of N2O5. This significantly reduces NO x -concentrations during subsequent daylight hours, so that less NO x is available for O3 production. Clouds thus directly reduce the concentrations of O3, CH2O, NO x , and HO x . Indirectly, this also affects the budgets of other trace gases, such as H2O2, CO, and H2.

Key words

Troposphere photochemistry clouds ozone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anbar, M. and Neta, P., 1967, A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals with inorganic and organic compounds in aqueous solution, Int. J. Appl. Radiat. Isot. 18, 493–523.Google Scholar
  2. Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C., 1988. Formic and acedic acid over the central Amazon region, Brazil. 1. Dry season, J. Geophys. Res. 93, 1616–1624.Google Scholar
  3. Atkinson, R., Carter, W.P.L., Darnall, R., Winer, A. M., and Pitts, J. N., 1984, A smog chamber and modeling study of gas phase NOx — air photooxidation of toluene and the cresols, Int. J. Chem. Kinet. 12, 779–836.Google Scholar
  4. Bahnemann, D. and Hart, E. J., 1982, Rate constants of the reaction of the hydrated electron and hydroxyl radical with ozone in aqueous solution, J. Phys. Chem. 86, 252–255.Google Scholar
  5. Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Troe, J., and Watson, R. T., 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II, J. Phys. Chem. Ref. Data 13, 1259–1380.Google Scholar
  6. Behar, D., Czapski, G., and Duchovny, I., 1970, Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions, J. Phys. Chem. 74, 2206–2210.Google Scholar
  7. Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merrill, J. T., Davis, V. J. and Chameides, W. L., 1990, Airborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the Southern Ocean south of Australia. J. Atmos. Chem. 10, 341–370.Google Scholar
  8. Bielski, B. H. J., 1978, Reevaluation of the spectral and kinetic properties of HO2 and O2 free radicals, Photochem. Photobiol. 28, 645–649.Google Scholar
  9. Bothe, E. and Schulte-Frohlinde, D., 1980. Reaction of dihydroxymethyl radical with molecular oxygen in aqueous solution, Z. Naturforsch. B, Anorg. Chem. Org. Chem. 35, 1035–1039.Google Scholar
  10. Bott, A. and Zdundowski, W., 1987, Electromagnetic energy within dielectric spheres, J. Opt. Soc. Am. 4A, 1361–1365.Google Scholar
  11. Bühler, R. E., Staehelin, J., and Hoigné, J., 1984, Ozone decomposition in water studied by pulse radiolysis. 1: HO2/O4 and HO3/O3 as intermediates, J. Phys. Chem. 88, 2560–2564.Google Scholar
  12. Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J., and Cantrell, C. A., 1985, Chemical mechanisms of acid generation in the troposphere, Nature 317, 27–35.Google Scholar
  13. Chameides, W. L., 1984, The photochemistry of a remote marine stratiform cloud, J. Geophys. Res. 89, 4739–4755.Google Scholar
  14. Chameides, W. L., 1986a, Photochemistry of the atmospheric aqueous phase, in W. Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, Springer-Verlag, Berlin, pp. 369–413.Google Scholar
  15. Chameides, W. L., 1986b, Possible role of NO3 in the nighttime chemistry of a cloud. J. Geophys. Res. 91, 5331–5337.Google Scholar
  16. Chameides, W. L., 1986c, ‘Reply’, J. Geophys. Res. 91, 14571–14572.Google Scholar
  17. Chameides, W. L. and Davis, D. D., 1982, The free radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res. 87, 4863–4877.Google Scholar
  18. Chameides, W. L. and Davis, D. D., 1983, Aqueous phase source of formic acid in clouds, Nature 304, 427–429.Google Scholar
  19. Chang, J. S., 1985, The NCAR eulerian regional acid deposition model, NCAR Technical Note NCAR/TN-256+STR, Boulder.Google Scholar
  20. Chatfield, R. B. and Crutzen, P. J., 1984, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res. 89, 7111–7132.Google Scholar
  21. Christensen, H., Sehested, K., and Corfitzen, H., 1982, Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem. 86, 1588–1590.Google Scholar
  22. Conrad, R. and Seiler, W., 1980, Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res. 85, 5493–5498.Google Scholar
  23. Conrad, R. and Seiler, W., 1985, Influence of temperature, moisture, and organic carbon on the flux of H2 and CO between soil and atmosphere: field studies in subtropical regions, J. Geophys. Res. 90, 5699–5709.Google Scholar
  24. CRC Handbook of Chemistry and Physics, 1987, 67th edition, CRC Press, Boca Raton, Florida.Google Scholar
  25. Crutzen, P. J., 1971, Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res. 76, 7311–7327.Google Scholar
  26. Crutzen, P. J., 1973, A discussion of the chemistry of some minor constituents in the stratosphere and the troposphere, Pure Appl. Geophys. 106–108, 1385–1399.Google Scholar
  27. Crutzen, P. J., 1988, Tropospheric ozone: An overview, in I. S. A. Isaksen (ed.), Tropospheric Ozone, D. Reidel, Dordrecht, pp. 3–32.Google Scholar
  28. Crutzen, P. J., Heidt, L. E., Krasnec, P. J., Pollock, W. H., and Seiler, W., 1979, Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS, Nature 282, 253–256.Google Scholar
  29. Crutzen, P. J. and Gidel, L. T., 1983, A two-dimensional photochemical model of the atmosphere. 2: The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res. 88, 6641–6661.Google Scholar
  30. DeMore, W. B., Molina, M. J., Spander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1987, Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation No. 8. JPL Publication 87–41. NASA Jet Propulsion Lab., Pasadena.Google Scholar
  31. Farhataziz and Ross, A. B., 1977, Selected specific rates of reactions of transients from water in aqueous solution, III. Hydroxyl radical and perhydroxyl radical and their aqueous ions, NSDRS-NBS 59, U.S. Dept. of Commerce, Washington D.C.Google Scholar
  32. Finalyson-Pitts, B. J. and Pitts, J. N., 1986, Atmospheric Chemistry: Fundamentals and Experimental Techniques, Wiley, New York.Google Scholar
  33. Fishman, J. and Crutzen, P. J., 1978, The origin of ozone in the troposphere, Nature 274, 855–858.Google Scholar
  34. Fuchs, N. A. and Sutigin, A. G., 1971, High-dispersed aerosols, Int. Rev. Aerosol Phys. Chem. 2, 1–60.Google Scholar
  35. Galloway, J. N., Likens, G. E., Keene, W. C., and Miller, J. M., 1982, The composition of precipitation in remote areas in the world, J. Geophys. Res. 87, 8771–8786.Google Scholar
  36. Gardner, J. A., Watson, L. R., Adewuyi, Y. G., Davidovits, P., Zahniser, M. S., Worsnop, D. R., and Kolb, C. E., 1987, Measurement of the mass accommodation coefficient of SO2(g) on water droplets, J. Geophys. Res. 92, 10 887–10 895.Google Scholar
  37. Graedel, T. E. and Weschler, C. J., 1981, Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys. 19, 505–539.Google Scholar
  38. Graedel, T. E. and Goldberg, K. I., 1983, Kinetic studies of raindrop chemistry. I. Inorganic and organic processes, J. Geophys. Res. 88, 10 865–10 882.Google Scholar
  39. Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986, Kinetic model studies of atmospheric droplet chemistry. 2. Homogeneous transition metal chemistry in raindrops, J. Geophys. Res. 91, 5205–5221.Google Scholar
  40. Hagesawa, K. and Neta, P., 1978, Rate constants and mechanisms of reaction for Cl2 radicals, J. Phys. Chem. 82, 854–857.Google Scholar
  41. Hahn, C. J., Warren, S. G., London, J., Chervin, R. M., and Jenne, R., 1982, Atlas of simultaneous occurrence of different cloud types over the oceans, NCAR Technical Note TN-201+STR, Boulder, Co.Google Scholar
  42. Hales, J. M. and Drewes, D. R., 1979, Solubility of ammonia in water at low concentrations, Atmos. Environ. 13, 1133–1147.Google Scholar
  43. Hartmann, W. R., Andreae, M. O., and Helas, G., 1989, Measurements of organic acids over central Germany, Atmos. Environ. 23, 1531–1533.Google Scholar
  44. Hartmann, W. R., 1990, Carbonsäuren in der Atmosphäre, PhD Thesis, University of Mainz.Google Scholar
  45. Heikes, B. G., Lazrus, A. L., Kok, G. L., Kunen, S. M., Gandrud, B. W., Gitlin, S. N., and Sperry, P. D., 1982, Evidence for aqueous phase hydrogen peroxide synthesis in the troposphere, J. Geophys. Res. 87, 3045–3051.Google Scholar
  46. Heikes, B. G. and Thompson, A. M., 1983, Effects of heterogenous processes on NO3, HONO, and HNO3 chemistry in the troposphere, J. Geophys. Res. 88, 10 883–10 895.Google Scholar
  47. Hobbs, P. V., 1971, Simultaneous airborne measurements of cloud condensation nuclei and sodium containing particles over the ocean, Quart. J. R. Met. Soc. 97, 263–271.Google Scholar
  48. Hoffmann, M. R., 1986, Aerosol and Aqueous-Phase Chemistry. Advanced Studies Institute on the Chemical and Meteorological Aspects of Atmospheric Source-Receptor Relationships, Oak Ridge, Tennessee.Google Scholar
  49. Isaksen, I. S. A., Midtbo, K. H., Sunde, J., and Crutzen, P. J., 1977, A simplified method to include molecular scatterng and reflection in calculations of photon fluxes and photodissociation rates, Geophys. Norv. 31, 11–26.Google Scholar
  50. Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res. 91, 9807–9826.Google Scholar
  51. Jacob, D. J. and Wofsy, S. C., 1988, Photochemistry of biogenic emissions over the Amazon forest, J. Geophys. Res. 93, 1477–1486.Google Scholar
  52. Jayson, G. G., Parsons, B. J., and Swallow, A. J., 1973, Some simple, highly reactive, inorganic chlorine derivates in aqueous solution, Trans. Faraday Soc. 69, 1597–1607.Google Scholar
  53. Jenkin, M. E., Cox, R. A., Hayman, G. D., and Whyte, L. J., 1988, Kinetic study of the reactions CH3O2+CH3O2 and CH3O2+HO2 using molecular modulation spectroscopy, J. Chem. Soc., Faraday Trans. 2 84, 913–930.Google Scholar
  54. Kanakidou, M., Singh, H. B., Valentin, K. M., and Crutzen, P. J., 1990, A 2-D study of ethane and propane oxidation in the troposphere, J. Geophys. Res., in press.Google Scholar
  55. Keene, W. C. and Galloway, J. N., 1986, Considerations regarding sources for formic and acidic acids in the troposphere, J. Geophys. Res. 91, 14 466–14 474.Google Scholar
  56. Kozak-Channing, L. F., and Heltz, G. R., 1983, Solubility of ozone in aqueous solutions of 0–0.6 M ionic strength at 5–30 °C, Environ. Sci. Technol. 17, 145–149.Google Scholar
  57. Ledbury, W. and Blair, E. W., 1925, The partial formaldehyde vapor pressure of aqueous solutions of formaldehyde, II, J. Chem. Soc. 127, 2832–2839.Google Scholar
  58. Lee, J. H. and Tang, I. N., 1987, Accommodation coefficient of gaseous NO2 on water surfaces, Atmos. Environ. 22,Google Scholar
  59. Lee, Y. N. and Schwartz, S. E., 1981, Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem. 85, 848–848.Google Scholar
  60. Le Henaff, P., 1968, Méthodes d'étude et propriétés des hydrates, hemiacetals dérives des aldehydes et des cetones, Bull. Soc. Chim. France, 4687–4700.Google Scholar
  61. Leighton, P. A., 1961, Photochemistry of Air Pollution, Academic Press, New York.Google Scholar
  62. Lelieveld, J., Crutzen, P. J., and Rodhe, H., 1989, Zonal average cloud characteristics for global atmospheric chemistry modelling, GLOMAC-report UDC 551.510.4, CM-74, International Meteorological Institute in Stockholm.Google Scholar
  63. Lelieveld, J. and Crutzen, P. J., 1990, Influences of cloud photochemical processes on tropospheric ozone, Nature 343, 227–233.Google Scholar
  64. Levy, H., 1971, Normal atmosphere: large radical and formaldehyde concentrations predicted, Science 173, 141–143.Google Scholar
  65. Lind, J. A. and Kok, G. L., 1986, Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res. 91, 7889–7895.Google Scholar
  66. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.Google Scholar
  67. Lowe, D. C., Schmidt, U., and Ehhalt, D. H., 1980, A new technique for measuring tropospheric formaldehyde (CH2O), Geophys. Res. Lett. 7, 825–828.Google Scholar
  68. Lowe, D. C. and Schmidt, U., 1983, Formaldehyde (HCHO) measurements in the nonurban atmosphere, J. Geophys. Res. 88, 10 844–10 858.Google Scholar
  69. Lurmann, F. W., Lloyd, A. C., and Atkinson, R., 1986, A chemical mechanism for use in long-range transport/acid deposition computer modeling, J. Geophys. Res. 91, 10 905–10 936.Google Scholar
  70. Madronich, S., 1987, Photodissociation in the atmosphere. I: Actinic flux and the effect of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.Google Scholar
  71. Madronich, S. and Calvert, J. G., 1990, Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., in press.Google Scholar
  72. Markovic, V. and Sehested, K., 1972, Radiolysis of aqueous solutions of some simple compounds containing aldehyde groups, I, formaldehyde, Proc. Tyhany Sympos. Radiat. Chem. 3, 1243–1243.Google Scholar
  73. Martell, A. E. and Smith, R. M., 1977, Critical Stability Constants, Vol. 3, Other Organic Ligands, Plenum, New York.Google Scholar
  74. Mason, B. J., 1971, The Physics of Clouds, Clarendon Press, Oxford.Google Scholar
  75. Matveev, L. T., 1984, Cloud Dynamics, D. Reidel, Dordrecht.Google Scholar
  76. McFarland, M., Kley, D., Drummond, J. W., Schmeltekopf, A. L., and Winkler, R. H., 1979, Nitric oxide measurements in the equatorial Pacific region, Geophys. Res. Lett. 6, 605–608.Google Scholar
  77. Mozurkewich, M., 1986, Comment on ‘Possible role of NO3 in the nighttime chemistry of a cloud’ by William A. Chameides, J. Geophys. Res. 91, 14 569–14 570.Google Scholar
  78. Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. G., 1987, Mass accommodation coefficient for HO2 radicals on aqueous particles, J. Geophys. Res. 92, 4163–4170.Google Scholar
  79. Mozurkewich, M. and Calvert, J. G., 1988, Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res. 93, 15 889–15 896.Google Scholar
  80. NBS, National Bureau of Standards, 1965, Selected values of chemical thermodynamic properties 1, NBS Technical Note 270-1, Washington DC.Google Scholar
  81. Noxon, J. F., 1978, Tropospheric NO2, J. Geophys. Res. 83, 3051–3057.Google Scholar
  82. Noxon, J. F., 1981, NOx in the mid-Pacific troposphere, Geophys. Res. Lett. 8, 1223–1226.Google Scholar
  83. Ogren, J. and Rodhe, H., 1986, Measurements of the chemical composition of cloud-water at a clean air site in central Scandinavia, Tellus 38B, 190–196.Google Scholar
  84. Pandis, S. and Seinfeld, J. H., 1989, Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res. 94, 1105–1126.Google Scholar
  85. Perrin, D. D., 1981, Ionization Constants of Inorganic Acids and Bases in Aqueous Solution, Pergamon Press, New York.Google Scholar
  86. Pickering, K. E., Thompson, A. M., Dickerson, R. R., Luke, W. T., McNamara, D. P., Greenberg, J. P., and Zimmerman, P. R., 1990, Model calculations of tropospheric ozone production using trace gas observations from convective events, J. Geophys. Res., in press.Google Scholar
  87. Platt, U. and Perner, D., 1980, Direct measurement of atmospheric CH2O, HNO2, O3, NO2 and SO2 by differential optical absorption, J. Geophys. Res. 85, 7453–7458.Google Scholar
  88. Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts, J. N., 1980, Detection of NO3 in the polluted troposphere by differential optical absorption, Geophys. Res. Lett. 7, 89–92.Google Scholar
  89. Platt, U., Perner, D., Schröder, J., Kessler, C., and Toenissen, A., 1981, The diurnal variation of NO3, J. Geophys. Res. 86, 11 965–11 970.Google Scholar
  90. Pruppacher, H. R. and Klett, J. D., 1980, Microphysics of Clouds and Precipitation, D. Reidel, Dordrecht.Google Scholar
  91. Radke, L. F. and Hobbs, P. V., 1969, Measurement of cloud condensation nuclei, light scattering coefficient, sodium containing particles, and Aitken nuclei in the Olympic mountains of Washington, J. Atmos. Sci. 26, 281–288.Google Scholar
  92. Ross, A. B. and Neta, P., 1979, Rate constants for reactions of inorganic radicals in aqueous solution, NSRDS-NBS 65. NBS, Washington D.C.Google Scholar
  93. Scholes, G. and Wilson, R. L., 1967, γ-Radiolysis of aqueous thymine solutions. Determination of relative reaction rates of OH radicals, Trans. Faraday Soc. 63, 2982–2993.Google Scholar
  94. Schubert, B., Schmidt, U., and Ehhalt, D. H., 1984, Sampling and analysis of acetaldehyde in tropospheric air, in B. Versino and G. Angeletti (eds.), Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel, Dordrecht, pp. 44–52.Google Scholar
  95. Schwartz, S. E., 1984, Gas- and aqueous-phase chemistry of HO2 in liquid water clouds, J. Geophys. Res. 89, 11 589–11 598.Google Scholar
  96. Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in W. Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, Springer-Verlag, Berlin, pp. 415–471.Google Scholar
  97. Schwartz, S. E. and Freiberg, J. E., 1981, Mass-transport limitation to the rate of reaction of gases in liquid droplets: application to oxidation of SO2 in aqueous solutions, Atmos. Environ. 15, 1129–1144.Google Scholar
  98. Schwartz, S. E. and White, W. H., 1981, Solubility equilibria of the nitrogen oxides and oxiacids in dilute aqueous solution, Adv. Environ. Sci. Eng. 4, 1–45.Google Scholar
  99. Schwartz, S. E. and White, W. H., 1983, Kinetics of reactive dissolution of nitrogen oxides with aqueous solution, Environ. Sci. Technol. 12, 1–116.Google Scholar
  100. Sehested, K., Rasmussen, O. L., and Fricke, H., 1968, Rate constants of OH with HO2, O2 and H2O2 + from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem. 72, 626–631.Google Scholar
  101. Sehested, K., Holcman, J., and Hart, E. J., 1983, Rate constants and products of the reactions of eaq , O2 and H with ozone in aqueous solutions, J. Phys. Chem. 87, 1951–1954.Google Scholar
  102. Seigneur, C. and Saxena, P., 1988, A theoretical investigation of sulfate formation in clouds, Atmos. Environ. 22, 101–115.Google Scholar
  103. Singh, H. B., 1987, Reactive nitrogen in the troposphere, Environ. Sci. Technol. 21, 320–327.Google Scholar
  104. Singh, H. B. and Hanst, P. L., 1981, Peroxyacetyl nitrate (PAN) in the unpolluted troposphere: An important reservoir for nitrogen species, Geophys. Res. Lett. 8, 941–944.Google Scholar
  105. Singh, H. B., Salas, L. J., and Stiles, R. E., 1983, Methyl halides in and over the eastern Pacific (40° N-32° S), J. Geophys. Res. 88, 3684–3690.Google Scholar
  106. Smith, R. M. and Martell, A. E., 1976, Critical Stability Constants, Vol. 4, Inorganic Complexes. Plenum, New York.Google Scholar
  107. Stumm, W. and Morgan, J. J., 1981, Aquatic Chemistry, Wiley, New York.Google Scholar
  108. Talbot, R. W., Beecher, K. M., Harriss, R. C., and Cofer, W. R., 1988, Atmospheric geochemistry of formic and acitic acids at a mid-latitude temperature site, J. Geophys. Res. 93, 1638–1652.Google Scholar
  109. Tang, I. N. and Lee, J. H., 1987, Accommodation coefficients of ozone and SO2: Implications on SO2 oxidation in cloud water, in R. W. Johnson, G. E. Gordon, W. Calkins and A. Z. Elzerman (eds.), The Chemistry of Acid Rain, Sources and Atmospheric Processes, American Chemical Society, Washington D.C.Google Scholar
  110. Thomas, K., Kley, D., Mihelcic, D., and Volz-Thomas, A., 1989, Mass accommodation coefficient for NO3 radicals on water: Implications for atmospheric oxidation processes, Preprint for International conference on the generation of oxidants on regional and global scales. University of East Anglia, Norwich, 3–7 July, 1989.Google Scholar
  111. Twohy, C. H., Austin, P. H., and Charlson, R. J., 1989, Chemical consequences of the initial diffusional growth of cloud droplets: a clean marine case, Tellus 41B, 51–60.Google Scholar
  112. Vaghjiani, G. L. and Ravishankara, A. R., 1989, Kinetics and mechanism of OH reaction with CH3OOH, J. Phys. Chem. 93, 1948–1959.Google Scholar
  113. Warneck, P., 1986, The equilibrium distribution of atmospheric gases between the two phases of liquid water clouds, in W. Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, Springer-Verlag, Berlin, pp. 473–499.Google Scholar
  114. Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne, R., 1986, Global distribution of total cloud cover and cloud type amounts over land, NCAR Technical Note TN-273+STR, Boulder, Co.Google Scholar
  115. Worsnop, D. R., Zahniser, M. S., Kolb, Ch. E., Gardner, J. A., Watson, L. R., Van Doren, J. M., Jayne, J. T., and Davidovits, P., 1989, Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces, J. Phys. Chem. 93, 1159–1172.Google Scholar
  116. Zafiriou, O. C., Alford, J., Herrera, M., Peltzer, E. T., and Gagosian, R. B., 1980. Formaldehyde in remote marine air and rain: flux measurements and estimates, Geophys. Res. Lett. 7, 341–344.Google Scholar
  117. Zellner, R., Exner, M., and Herrmann, H., 1990, Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K, J. Atmos. Chem. 10, 411–425.Google Scholar
  118. Zetzsch, C. and Stuhl, F., 1982, Rate constants for reactions of OH with carbonic acids, in B. Versino and H. Ott (eds.), Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel, Dordrecht, pp. 129–137.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • J. Lelieveld
    • 1
  • P. J. Crutzen
    • 1
  1. 1.Max-Planck-Institute for ChemistryAirchemistry DivisionMainzGermany

Personalised recommendations