Journal of Atmospheric Chemistry

, Volume 12, Issue 3, pp 211–227 | Cite as

The temperature dependent, infrared absorption cross-sections for the chlorofluorocarbons: CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115

  • Anthony H. McDaniel
  • Chris A. Cantrell
  • James A. Davidson
  • Richard E. Shetter
  • Jack G. Calvert
Article

Abstract

The infrared absorption cross-sections for eight commonly used halogenated methanes and ethanes have been measured as a function of temperature from 203 to 293 K. High resolution spectra (0.03 cm-1) have been used to derive integrated band strengths and peak cross-sections associated with the spectral features in the infrared region from 600 to 1500 cm-2. The values obtained in this study are compared to those from previous reports, and recommendations are made for uses in atmospheric sensing and radiative energy transfer models. The observed temperature dependence in the spectral features is also discussed.

Key words

Chlorofluorocarbons infrared spectroscopy 

Key words

Chlorofluorocarbons infrared spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantrell, C. A., Davidson, J. A., McDaniel, A. H., Shetter, R. E., and Calvert, J. G., 1990, Temperature dependent formaldehyde cross-sections in the near ultraviolet spectral region, J. Phys. Chem. 94, 3902–3908.Google Scholar
  2. Cicerone, R. J., Stolarksi, R. S., and Walters, S., 1974, Stratospheric ozone destruction by man-made chlorofluoromethanes, Science 185, 1165–1166.Google Scholar
  3. Demore, W. B., Sander, S. P., Golden, D. M., Molina, M. J. Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1990, JPL Publication 90–1, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.Google Scholar
  4. Golden, W. G., Horner, D. A., and Overend, J., 1978, Intensities of binary overtone and combination bands in the ir spectrum of CCIF3, J. Chem. Phys. 68, 964–969.Google Scholar
  5. Goldman, A., Bonomo, F. S., and Murcray, D. G., 1976, Statistical band model analysis and integrated intensity for the 11.8 μm band of CFCl3, Appl. Opt. 15, 2305–2307.Google Scholar
  6. Kagann, R. H., Elkins, J. W., and Sams, R. L., 1983, Absolute band strengths of halocarbons F-11 and F-12 in the 8- to 16 μm region. J. Geophys. Res. 88, 1427–1432.Google Scholar
  7. Massie, S. T., Goldman, A., Murcray, D. G., and Gille, J. C., 1985, Approximate absorption cross-sections of F12, F11, CIONO2, N2O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4, Appl. Opt. 24, 3426–3427.Google Scholar
  8. Molina, M. J. and Rowland, F. S., 1974, Stratospheric sink for chlorofluoromethanes: chlorine atomcatalysed destruction of ozone, Nature 249, 810–812.Google Scholar
  9. Murcray, D. G., Bonomo, F. S., Brooks, J. N., Goldman, A., Murcray, F. H., and Williams, W. J., 1975, Detection of fluorocarbons in the stratosphere, Geophys. Res. Lett. 2, 109–112.Google Scholar
  10. Nanes, R., Silvaggio, P. M., and Boese, R. W., 1980, Temperature dependence of intensities of the 8–12 μm Bands of CFCl3, J. Quant. Spectrosc. Radiat, Transfer 23, 211–220.Google Scholar
  11. Nguyen-Vah-Than, Rossi, I. and Jean-Louis, A., 1986, Infrared bandshapes and band strengths of CF2Cl2 from 800 to 1200 cm-1 at 296 and 200 K, J. Geophys. Res. 91, 4056–4062.Google Scholar
  12. Owens, A. J., Steed, J. M., Miller, C., Filkin, D. L., and Jesson, J. P., 1982, The atmospheric lifetimes of CFC-11 and CFC-12, Geophys. Res. Lett. 9, 700–703.Google Scholar
  13. Overend, J., 1963, in M. Davies (ed.), Infrared Spectroscopy and Molecular Structure, Elsevier Science, New York, pp. 345–376.Google Scholar
  14. Penner, S. S. and Weber, D., 1951, Quantitative infrared intensity measurements: I. Carbon monoxide pressurized with infrared-inactive gases, J. Chem. Phys. 19, 807–816.Google Scholar
  15. Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T., 1985, Trace gas trends and their potential role in climate change, J. Geophys. Res. 90, 5547–5566.Google Scholar
  16. Rogers, J. D. and Stephens, R. D., 1988, Absolute infrared intensities for F-113 and F-114 and an assessment of their greenhouse warming potential relative to other chlorofluorocarbons, J. Geophys. Res. 93, 2423–2428.Google Scholar
  17. Smith, M. A. H., Rinsland, C. P., Fridovich, B., and Rao, K. N., 1985, intensities and collision broadening parameters from infrared spectra, Molecular Spectroscopy: Modern Research, Academic Press, New York, vol. III, pp. 111–248.Google Scholar
  18. Varanasi, P. and Ko, F., 1977, Intensity measurements in freon bands of atmosphere interest, J. Quant. Spectrosc. Radiat. Transfer 17, 385–388.Google Scholar
  19. Varanasi, P. and Chudamani, S., 1988, Infrared intensities of some chlorofluorocarbons capable of perturbing the global climate, J. Geophys. Res. 93, 1666–1668.Google Scholar
  20. Wuebbles, D. J., 1983, Chlorocarbon emission scenarios: potential impact on stratospheric ozone, J. Geophys. Res. 88, 1433–1443.Google Scholar
  21. Yao, S. J. and Overend, J., 1976, Vibrational intensities-XXIII. The effect of anharmonicity on the temperature dependence of integrated band intensities, Spectrochim. Acta 32A, 1059–1065.Google Scholar
  22. Wilson, E. B. and Wells, A. J., 1946, Infrared and raman spectra of polyatomic molecules (XIV) propylene, J. Chem. Phys. 14, 578–580.Google Scholar
  23. World Meteorological Organization (WMO), Atmospheric Ozone, 1985, Assessment of our under-standing of the process controlling its present distribution and change, Rep. 16, vol. II, chap. 11, pp. 632–647.Google Scholar
  24. Zander, R., Rinsland, C. P., Farmer, C. B., and Norton, R. H., 1987, Infrared spectroscopic measurements of halogenated source gases in the stratosphere with the ATMOS instrument, J. Geophys. Res. 92, 9836–9850.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Anthony H. McDaniel
    • 1
  • Chris A. Cantrell
    • 1
  • James A. Davidson
    • 1
  • Richard E. Shetter
    • 1
  • Jack G. Calvert
    • 1
  1. 1.Atmospheric Kinetics and Photochemistry Group, Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations