Journal of Atmospheric Chemistry

, Volume 7, Issue 2, pp 153–176 | Cite as

Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air

  • Ralph F. Keeling


On 25 and 26 October 1986 the air in Cambridge, Massachusetts was monitored for O2 and CO2 mole fraction. O2 concentrations were detected from changes in the relative refractivity of dried air between two lines of 198Hg at 2537.269 and 4359.562 Å using dual-wavelength interferometry. Changes in oxygen mole fraction were resolved with two-minute time resolution to a precision of ±2.0 ppm. Changes in O2 were shown to be strongly anticorrelated with changes in CO2 as expected for combustion processes. The demonstrated instrumental capabilities are appropriate for measuring changes in O2 mole fraction in background air which could be of importance to a broad range of biogeochemical studies.

Key words

Atmospheric oxygen atmospheric carbon dioxide carbon cycle urban air interferometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacastow, R. B., Adams, J. A., Keeling, C. D., Moss, D. J., Worf, T. P., and Wong, C. S., 1980, Atmospheric carbon dioxide, the southern oscillation, and the weak 1975 El Nino, Science 210, 66–68.Google Scholar
  2. Benedict, F. G., 1912, The Composition of the Atmosphere with Special Reference to its Oxygen Content, Carnegie Institution of Washington, Washington, D.C.Google Scholar
  3. Broecker, W. S., Takahashi, T., Simpson, H. J., Peng, T.-H., 1979, Fate of fossil fuel carbon dioxide and the global carbon budget, Science 206(4417), 409–418.Google Scholar
  4. Broecker, W. S. and Peng, T.-H., 1982, Tracers in the Sea, Lamont-Doherty Geological Observatory, Palisades, New York.Google Scholar
  5. Carpenter, T. M., 1937, The constancy of the atmosphere with respect to carbon dioxide and oxygen content, J. Amer. Chem. Soc. 59, 358–360.Google Scholar
  6. Cardwell, L. E., Benton, L. F., 1971, U.S. Bureau of Mines Information Circular 8518, Analysis of Natural Gases.Google Scholar
  7. Cuthbertson, C. and Cuthbertson, M., 1920, On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane, Proc. Royal Soc. London, Series A 97, 152–159.Google Scholar
  8. Cuthbertson, C. and Cuthbertson, M., 1932, The refraction and dispersion of neon and helium, Proc. Royal Soc. London, Series A 135, 40–47.Google Scholar
  9. Enting, I. G. and Pearman, G. I., 1987, Description of a one-dimensional carbon cycle model calibrated using techniques of constrained inversion, Tellus 39B, 459–476.Google Scholar
  10. Eppley, R. W. and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature 282, 677–680.Google Scholar
  11. Fung, I., Prentice, K., Matthews, E., Lerner, J., and Russel, G., 1983, Three-dimensional tracer model study of atmospheric CO2: response to seasonal exchanges with the terrestrial biosphere, J. Geophys. Res. 88 (C2), 1281–1294.Google Scholar
  12. Giese, A. C., 1973, Cell Physiology, 4th edn., W. B. Saunders, Philadelphia.Google Scholar
  13. Glueckauf, E., 1951, The composition of atmospheric air, in T. Malone (ed.) Compendium of Meteorology, American Meteorological Society, Boston, pp. 3–10.Google Scholar
  14. Heimann, M., Keeling, C. D., and Fung, I. Y., 1986, Simulating the atmospheric carbon dioxide distribution with a three dimensional tracer model, in J. R. Trabalka and D. E. Reichle (eds.), The Changing Carbon Cycle: A Global Analysis, Springer Verlag, New York, pp. 16–49.Google Scholar
  15. Hill, N. E., Vaughan, W. E., Price, A. H., and Davies, M., 1969, Dielectric Properties and Molecular Behaviour, Van Nostrand Reinhold, London.Google Scholar
  16. Holey, T., Environmental Protection Agency, Air Management Division, Personal communication.Google Scholar
  17. Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L., Myers, N., 1987, The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux, Tellus 39B, 122–139.Google Scholar
  18. Hughes, E. E., 1968, A simple technique for the absolute determination of atmospheric oxygen, Environ. Sci. Technol. 2 (3), 201–203.Google Scholar
  19. Jenkins, W. J. and Goldman, J. C., 1985. Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Marine Res. 43, 465–491.Google Scholar
  20. Kaufman, V., 1962, Wavelengths, energy levels, and pressure shifts in mercury 198, J. Opt. Soc. Amer. 52(8), 866–870.Google Scholar
  21. Keeling, C. D., Bacastow, R. B., and Whorf, T. P., 1982, Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii, in W. C. Clark (ed.), Carbon Dioxide Review: 1982, Oxford University Press, New York, pp. 377–385.Google Scholar
  22. Keeling, C. D., Carter, A. F., and Mook, W. G., 1984, Seasonal, latitudinal and secular variations in the abundance and isotopic ratios of atmospheric CO2. 2. Results from oceanic cruises in the tropical Pacific Ocean, J. Geophys. Res. 89(D3), 4615–4628.Google Scholar
  23. Keeling, R. F., 1988, Development of an interferometric oxygen analyzer for precise measurement of the atmospheric O2 mole fraction, PhD Thesis, Harvard Univ.Google Scholar
  24. Kerl, K., 1982, Determination of mean molecular polarizabilities and second virial coefficients of gases by scanning-wavelength interferometry, Zeit Physik. Chem. Neue Folge 129, 129–148.Google Scholar
  25. Khalil, M. A. K., and Rasmussen, R. A., 1986, Interannual variability of atmospheric methane: possible effects of the El Niño-Southern Oscillation, Science 232, 56–57.Google Scholar
  26. Koch, J., 1949, On the refraction and dispersion of the noble gases krypton and xenon, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 19(13), 173–187.Google Scholar
  27. Komhyr, W. D., Gammon, R. H., Harris, T. B., Waterman, L. S., Conway, T. J., Taylor, W. R., Thoning, K. W., 1985, Global Atmospheric CO2 distribution and variations from 1968–1982 NOAA/GMCC CO2 flask sample data, J. Geophys. Res. 90(D3), 5567–5596.Google Scholar
  28. Krogh, A., 1919, The composition of the atmosphere, Det Kgl. Danske Videnskabernes Selskab. 1, No. 12.Google Scholar
  29. Ladenburg, R. and Wolfsohn, G., 1932, Untersuchungen über die Dispersion von Gasen und Dämpfen and ihre Darstellung durch die Dispersiontheorie. II. Die Dispersion des Sauerstoffs zwischen 6000 und 1920 Å, Zeit. Physik, 79, 42–60.Google Scholar
  30. Lockhart, E. E. and Court, A., 1942, Oxygen deficiency in Antarctic air, Monthly Weath. Rev. 70(5), 93–96Google Scholar
  31. Logan, J. A., 1985, Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res. 90(D6), 10463–10482.Google Scholar
  32. Machta, L. and Hughes, E., 1970, Atmospheric Oxygen in 1967 to 1970, Science 168, 1582–1584.Google Scholar
  33. Machta, L. E., 1980, Oxygen depletion, in Jacoby (ed.), Carbon Dioxide Effects Research and Assessment Program: Proceedings of the International Meeting on Stable Isotopes in Tree-Ring Research, U.S. Dept. of Energy, pp. 125–127.Google Scholar
  34. Mansfield, C. R. and Peck, E. R., 1969, Dispersion of helium, J. Opt. Soc. Amer. 59(2), 199–204.Google Scholar
  35. Marks, L. E. (ed.), 1967, Mechanical Engineers' Handbook, 7th edn. McGraw-Hill, New York.Google Scholar
  36. Marland, G. and Rotty, R. M., 1984, Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1982, Tellus 36 B, 232–261.Google Scholar
  37. Mook, W. G., Koopmans, M., Carter, A. F., and Keeling, C. D., 1983, Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide 1. Results from land stations, J. Geophys. Res. 88(C15), 10915–10933.Google Scholar
  38. Neftel, A., Moor, E., Oeschger, H., Stauffer, B., 1985, Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature 315, 45–47.Google Scholar
  39. NOAA, 1976, U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, United States Air Force, Washington, D.C.Google Scholar
  40. Old, J. G., Gentili, K. L., and Peck, E. R., 1971, Dispersion of carbon dixide, J. Opt. Soc. Amer. 61(1), 89–90.Google Scholar
  41. Owens, J. C., 1967, Optical refractive index of air: dependence on pressure, temperature and composition, Appl. Opt. 6(1), 51–59.Google Scholar
  42. Pearman, G. I. and Hyson, P., 1980, Activities of the global biosphere as reflected in atmospheric CO2 records, J. Geophys. Res. 85(C8), 4468–4474.Google Scholar
  43. Peck, E. R. and Fisher, D. J., 1964, Dispersion of argon, J. Opt. Soc. Amer. 54(11), 1362–1364.Google Scholar
  44. Peck, E. R. and Khanna, N., 1966, Dispersion of nitrogen, J. Opt. Soc. Amer. 56(8), 1059–1063.Google Scholar
  45. Peng, T.-H. and Broecker, W. S., 1984, Ocean life cycles and the atmospheric CO2 content, J. Geophys. Res. 89(C5), 8170–8180.Google Scholar
  46. Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J., 1987, Seasonal variability or carbon dioxide, nutrients, and oxygen in the northern North Atlantic surface water: observations and a model, Tellus 39B, 439–458.Google Scholar
  47. Platt, T., 1984, Primary productivity of the central North Pacific: comparison of oxygen and carbon fluxes, Deep Sea Res. 31(11), 1311–1319.Google Scholar
  48. Sexton, K. and Westberg, H., 1984, Nonmethane hydrocarbon composition of urban and rural atmospheres, Atmos. Environ. 18(6), 1125–1132.Google Scholar
  49. Shepherd, M., 1935, The composition of the atmosphere at approximately 21.5 kilometers, U.S. Army Stratosphere Flight of 1935 in Balloon Explorer II, National Geographic Soc., Washington D.C., pp. 117–133.Google Scholar
  50. Shulenberger, E. and Reid, J. L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered, Deep Sea Res. 28A(9), 901–919.Google Scholar
  51. Siegenthaler, U. and Oeschger, H., 1987, Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, 39B, 140–154.Google Scholar
  52. Snyder, J. J., Algorithm for fast digital analysis of interference fringes, Appl. Opt. 19(8), 1223–1225.Google Scholar
  53. Söderlund, R. and Svennson, B. H., 1976, The global nitrogen cycle, in B. Svensson, and R. Söderlund (eds.), Nitrogen, Phosphorus and Sulphur-Global Cycles, SCOPE Report No. 7, Ecol. Bull. 22, 23–73.Google Scholar
  54. Trenberth, K. E., Christy, J. R., and Olson, J. G., 1987, Global atmospheric mass, surface pressure, and water vapor variations, J. Geophys. Res. 92(D12), 14815–14826.Google Scholar
  55. Weiss, R., 1981, The temporal and spatial distribution of tropospheric nitrous oxide, J. Geophys. Res. 86(C8), 7185–7195.Google Scholar
  56. Zeiss, G. D. and Meath, W. J., 1977, Dispersion energy constants C6 (A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO, and N2O, Molec. Phys. 33(4), 1155–1176.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Ralph F. Keeling
    • 1
  1. 1.Harvard UniversityCambridgeU.S.A.

Personalised recommendations