, Volume 80, Issue 2, pp 107–138 | Cite as

Spatial pattern and ecological analysis

  • Pierre Legendre
  • Marie Josée Fortin


The spatial heterogeneity of populations and communities plays a central role in many ecological theories, for instance the theories of succession, adaptation, maintenance of species diversity, community stability, competition, predator-prey interactions, parasitism, epidemics and other natural catastrophes, ergoclines, and so on. This paper will review how the spatial structure of biological populations and communities can be studied. We first demonstrate that many of the basic statistical methods used in ecological studies are impaired by autocorrelated data. Most if not all environmental data fall in this category. We will look briefly at ways of performing valid statistical tests in the presence of spatial autocorrelation. Methods now available for analysing the spatial structure of biological populations are described, and illustrated by vegetation data. These include various methods to test for the presence of spatial autocorrelation in the data: univariate methods (all-directional and two-dimensional spatial correlograms, and two-dimensional spectral analysis), and the multivariate Mantel test and Mantel correlogram; other descriptive methods of spatial structure: the univariate variogram, and the multivariate methods of clustering with spatial contiguity constraint; the partial Mantel test, presented here as a way of studying causal models that include space as an explanatory variable; and finally, various methods for mapping ecological variables and producing either univariate maps (interpolation, trend surface analysis, kriging) or maps of truly multivariate data (produced by constrained clustering). A table shows the methods classified in terms of the ecological questions they allow to resolve. Reference is made to available computer programs.


Ecological theory Mantel test Mapping Model Spatial analysis Spatial autocorrelation Vegetation map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T.F.H., Bartell, S.M. & Koonce, J.F. 1977. Multiple stable configurations in ordination of phytoplankton community change rates. Ecology 58: 1076–1084.Google Scholar
  2. Allen, T.F.H. & Starr, T.B. 1982. Hierarchy — Perspectives for ecological complexity. Univ. of Chicago Press, Chicago.Google Scholar
  3. Andersson, P.-A. 1988. Ordination and classification of operational geographic units in Southwest Sweden. Vegetatio 74: 95–106.Google Scholar
  4. Bell, M.A. & Legendre, P. 1987. Multicharacter chronological clustering in a sequence of fossil sticklebacks. Syst. Zool. 36: 52–61.Google Scholar
  5. Bennett, R.J., Haining, R.P. & Griffith, D.A. 1984. The problem of missing data on spatial surfaces. Ann. Assoc. Am. Geogr. 74: 138–156.Google Scholar
  6. Bivand, R. 1980. A Monte Carlo study of correlation coefficient estimation with spatially autocorrelated observations. Quaest. Geogr. 6: 5–10.Google Scholar
  7. Boots, B.N. 1977. Contact number properties in the study of cellular networks. Geogr. Anal. 9: 379–387.Google Scholar
  8. Bouchard, A., Bergeron, Y., Camiré, C., Gangloff, P. & Gariépy, M. 1985. Proposition d'une méthodologie d'inventaire et de cartographie écologique: le cas de la MRC du Haut-Saint-Laurent. Cah. Géogr. Qué. 29: 79–95.Google Scholar
  9. Box, G.E.P. & Jenkins, G.M. 1970. Time series analysis, forecasting and control. Holden-Day, San Francisco.Google Scholar
  10. Burgman, M.A. 1987. An analysis of the distribution of plants on granite outcrops in southern Western Australia using Mantel tests. Vegetatio 71: 79–86.Google Scholar
  11. Burrough, P.A. 1986. Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford.Google Scholar
  12. Burrough, P.A. 1987. Spatial aspects of ecological data. In: Jongman, R.H.G., terBraak, C.J.F. & vanTongeren, O.F.R. (eds), Data analysis in community and landscape ecology, pp 213–251. Pudoc, Wageningen.Google Scholar
  13. Carpenter, S.R. & Chaney, J.E. 1983. Scale of spatial pattern: four methods compared. Vegetatio 53: 153–160.Google Scholar
  14. Cicéri, M.-F., Marchand, B. & Rimbert, S. 1977. Introduction à l'analyse de l'espace. Collection de Géographie applicable. Masson, Paris.Google Scholar
  15. Cliff, A.D. & Ord, J.K. 1981. Spatial processes: models and applications. Pion Limited, London.Google Scholar
  16. Cochran, W.G. 1977. Sampling techniques, 3rd ed. John Wiley & Sons, New York.Google Scholar
  17. Cooper, D.W. 1968. The significance level in multiple tests made simultaneously. Heredity 23: 614–617.Google Scholar
  18. Curtis, D.J. & Bignal, E.M. 1985. Quantitative description of vegetation physiognomy using vertical quadrats. Vegetatio 63: 97–104.Google Scholar
  19. Darwin, C. 1881. The formation of vegetable mould through the action of worms. John Murray, London.Google Scholar
  20. David, M. 1977. Geostatistical ore reserve estimation. Developments in geomathematics, 2. Elsevier, Amsterdam.Google Scholar
  21. Davis, J.C. 1986. Statistics and data analysis in geology, 2nd ed. John Wiley & Sons, New York.Google Scholar
  22. Dietz, E.J. 1983. Permutation tests for association between two distance matrices. Syst. Zool. 32: 21–26.Google Scholar
  23. Dow, M.M. & Cheverud, J.M. 1985. Comparison of distance matrices in studies of population structure and genetic microdifferentiation: quadratic assignment. Am. J. Phys. Anthropol. 68: 367–373.Google Scholar
  24. Edgington, E.S. 1987. Randomization tests, 2nd ed. Marcel Dekker Inc., New York.Google Scholar
  25. Edwards, D. & Coull, B.C. 1987. Autoregressive trend analysis: an example using long-term ecological data. Oikos 50: 95–102.Google Scholar
  26. Estabrook, G.F. & Gates, B. 1984. Character analysis of the Banisteriopsis campestris complex (Malpighiaceae), using spatial autocorrelation. Taxon 33: 13–25.Google Scholar
  27. Estabrook, G.F. & Rogers, D.J. 1966. A general method of taxonomic description for a computed similarity measure. BioScience 16: 789–793.Google Scholar
  28. Fisher, W.D. 1958. On grouping for maximum homogeneity. J. Amer. Stat. Ass. 53: 789–798.Google Scholar
  29. Ford, E.D. 1976. The canopy of a Scots pine forest: description of a surface of complex roughness. Agric. Meteorol. 17: 9–32.Google Scholar
  30. Ford, E.D. & Renshaw, E. 1984. The interpretation of process from pattern using two-dimensional spectral analysis: modelling single species patterns in vegetation. Vegetatio 56: 113–123.Google Scholar
  31. Fortin, M.-J. 1985. Analyse spatiale de la répartition des phénomènes écologiques: méthodes d'analyse spatiale, théorie de l'échantillonnage. Mémoire de Maîtrise, Université de Montréal.Google Scholar
  32. Gabriel, K.R. & Sokal, R.R. 1969. A new statistical approach to geographic variation analysis. Syst. Zool. 18: 259–278.Google Scholar
  33. Galiano, E.F. 1982. Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Vegetatio 49: 39–43.Google Scholar
  34. Galiano, E.F. 1983. Detection of multi-species patterns in plant populations. Vegetatio 53: 129–138.Google Scholar
  35. Galzin, R. & Legendre, P. 1988. The fish communities of a coral reef transect. Pac. Sci. 41: 158–165.Google Scholar
  36. GauchJr., H.G. 1982. Multivariate analysis in community ecology. Cambridge Univ. Press, Cambridge.Google Scholar
  37. Geary, R.C. 1954. The contiguity ratio and statistical mapping. Incorp. Statist. 5: 115–145.Google Scholar
  38. Getis, A. & Boots, B. 1978. Models of spatial processes: an approach to the study of point, line and area patterns. Cambridge Univ. Press, Cambridge.Google Scholar
  39. Gittins, R. 1968. Trend-surface analysis of ecological data. J. Ecol. 56: 845–869.Google Scholar
  40. Goodall, D.W. 1974. A new method for the analysis of spatial pattern by random pairing of quadrats. Vegetatio 29: 135–146.Google Scholar
  41. Gordon, A.D. 1973. Classification in the presence of constraints. Biometrics 29: 821–827.Google Scholar
  42. Gordon, A.D. & Birks, H.J.B. 1972. Numerical methods in Quaternary palaeoecology. I. Zonation of pollen diagrams. New Phytol. 71: 961–979.Google Scholar
  43. Gordon, A.D. & Birks, H.J.B. 1974. Numerical methods in Quaternary palaeoecology. II. Comparison of pollen diagrams. New Phytol. 73: 221–249.Google Scholar
  44. Gower, J.C. & Legendre, P. 1986. Metric and Euclidean properties of dissimilarity coefficients. J. Classif. 3: 5–48.Google Scholar
  45. Gower, J.C. & Ross, G.J.S. 1969. Minimum spanning trees and single linkage cluster analysis. Appl. Statist. 18: 54–64.Google Scholar
  46. Green, R.H. 1979. Sampling design and statistical methods for environmental biologists. John Wiley & Sons, New York.Google Scholar
  47. Hassell, M.P. & May, R.M. 1974. Aggregation in predators and insect parasites and its effect on stability. J. Anim. Ecol. 43: 567–594.Google Scholar
  48. Hawkins, D.M. & Merriam, D.F. 1973. Optimal zonation of digitized sequential data. J. Int. Assoc. Math. Geology 5: 389–395.Google Scholar
  49. Hawkins, D.M. & Merriam, D.F. 1974. Zonation of multivariate sequences of digitized geologic data. J. Int. Assoc. Math. Geology 6: 263–269.Google Scholar
  50. Hensen, V. 1884. Ueber die Bestimmung der Planktons oder des im Meer triebenden Materials an Pflanzen und Tieren. Ber. Comm. Wiss. Unters. Deutsch. Meere 5.Google Scholar
  51. Hubert, L.J. 1985. Combinatorial data analysis: association and partial association. Psychometrika 50: 449–467.Google Scholar
  52. Hudon, C. & Lamarche, G. in press. Niche segregation between the American lobster (Homarus americanus) and the rock crab (Cancer irroratus). Mar. Ecol. Prog. Ser.Google Scholar
  53. Huffaker, C.B. 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27: 343–383.Google Scholar
  54. Ibanez, F. 1981. Immediate detection of heterogeneities in continuous multivariate, oceanographic recordings. Application to time series analysis of changes in the bay of Villefranche sur Mer. Limnol. Oceanogr. 26: 336–349.Google Scholar
  55. Journel, A.G. & Huijbregts, C. 1978. Mining geostatistics. Academic Press, London.Google Scholar
  56. Jumars, P.A., Thistle, D. & Jones, M.L. 1977. Detecting two-dimensional spatial structure in biological data. Oecologia (Berl.) 28: 109–123.Google Scholar
  57. Krackhardt, D. 1988. Predicting with networks: nonparametric multiple regression analysis of dyadic data. Social Networks 10: 359–381.Google Scholar
  58. Krige, D.G. 1966. Two dimensional weighted moving average trend surfaces for ore evaluation. Jour. S. Afr. Inst. Min. Metall. 66: 13–38.Google Scholar
  59. Lam, N.S. 1983. Spatial interpolation methods: a review. Am. Cartogr. 10: 129–149.Google Scholar
  60. Lebart, L. 1978. Programme d'agrégation avec contraintes (C.A.H. contiguïté). Cah. Anal. Données 3: 275–287.Google Scholar
  61. Lee, P.J. 1981. The most predictable surface (MPS) mapping method in petroleum exploration. Bull. Can. Petrol. Geol. 29: 224–240.Google Scholar
  62. Lefkovitch, L.P. 1978. Cluster generation and grouping using mathematical programming. Math. Biosci. 41: 91–110.Google Scholar
  63. Lefkovitch, L.P. 1980. Conditional clustering. Biometrics 36: 43–58.Google Scholar
  64. Legendre, L. & Demers, S. 1985. Auxiliary energy, ergoclines and aquatic biological production. Naturaliste can. (Qué.) 112: 5–14.Google Scholar
  65. Legendre, L. & Legendre, P., 1983a Numerical ecology. Developments in environmental modelling, 3. Elsevier, Amsterdam.Google Scholar
  66. Legendre, L. & Legendre, P. 1983b. Partiotioning ordered variables into discrete states for discriminant analysis of ecological classifications. Can. J. Zool. 61: 1002–1010.Google Scholar
  67. Legendre, L. & Legendre, P. 1984a. Écologie numérique, 2ième éd. Tome 2: La structure des données écologiques. Masson, Paris et les Presses de l'Université du Québec.Google Scholar
  68. Legendre, P. 1987. Constrained clustering. In: Legendre, P. & Legendre, L. (eds), Developments in numerical ecology. NATO ASI Series, Vol. G 14, pp. 289–307. Springer, Berlin.Google Scholar
  69. Legendre, P., Dallot, S., Legendre, L. 1985. Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am. Nat. 125: 257–288.Google Scholar
  70. Legendre, P. & Legendre, V. 1984b. Postglacial dispersal of freshwater fishes in the Québec peninsula. Can J. Fish. Aquat. Sci. 41: 1781–1802.Google Scholar
  71. Legendre, P. & Troussellier, M. 1988. Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol. Oceanogr. 33: 1055–1067.Google Scholar
  72. Levin, L.A. 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: community structure and response to disturbance. Ecology 65: 1185–1200.Google Scholar
  73. MacDonald, G.M. & Waters, N.M. 1988. The use of most predictable surfaces for the classification and mapping of taxon assemblages. Vegetatio 74: 125–135.Google Scholar
  74. MacQueen, J.B. 1967. Some methods for classification and analysis of multivariate observations. In: LeCam, L.M. & Neyman, J. (eds), Proc. Fifth Berkeley Symp. Math. Stat. Probab. Vol. 1, pp. 281–297. University of California Press, Berkeley.Google Scholar
  75. Manly, B.F.J. 1986. Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Popul. Ecol. 28: 201–218.Google Scholar
  76. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.Google Scholar
  77. Matheron, G., 1962. Traité de géostatistique appliquée. Tome 1. Éditions Technip, Paris.Google Scholar
  78. Matheron, G. 1973. The intrinsic random functions and their applications. Adv. Appl. Prob. 5: 439–468.Google Scholar
  79. May, R.M. 1974. Stability and complexity in model ecosystems, 2nd ed. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  80. McBratney, A.B. & Webster, R. 1981. Detection of ridge and furrow pattern by spectral analysis of crop yield. Int. Stat. Rev. 49: 45–52.Google Scholar
  81. McCune, B. & Allen, T.F.H. 1985. Will similar forest develop on similar sites? Can. J. Bot. 63: 367–376.Google Scholar
  82. Miles, R.E. 1970. On the homogeneous planar Poisson point process. Math. Biosci. 6: 85–127.Google Scholar
  83. MillerJr, R.G. 1977. Developments in multiple comparisons. J. Amer. Stat. Ass. 72: 779–788.Google Scholar
  84. Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.Google Scholar
  85. Newbery, D.McC., Renshaw, E. & Brünig, E.F. 1986 Spatial pattern of trees in kerangas forest, Sarawak. Vegetatio 65: 77–89.Google Scholar
  86. Oden, N.L. 1984. Assessing the significance of a spatial correlogram. Geogr. Anal. 16: 1–16.Google Scholar
  87. Oden, N.L. & Sokal, R.R. 1986. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst. Zool. 35: 608–617.Google Scholar
  88. Openshaw, S. 1974. A regionalisation program for large data sets. Computer Appl. 3–4: 136–160.Google Scholar
  89. Orlóci, L. 1978. Multivariate analysis in vegetation research, 2nd ed. Junk, The Hague.Google Scholar
  90. Phillips, J.D. 1985. Measuring complexity of environmental gradients. Vegetatio 64: 95–102.Google Scholar
  91. Pielou, E.C. 1977 Mathematical ecology, 2nd ed. J. Wiley & Sons, New York.Google Scholar
  92. Pielou, E.C. 1984. The interpretation of ecological data. A primer on classification and ordination. John Wiley & Sons, New York.Google Scholar
  93. Priestly, M.B. 1964. The analysis of two dimensional stationary processes with discontinuous spectra. Biometrika 51: 195–217.Google Scholar
  94. Ray, D.M. & Berry, B.J.L. 1966. Multivariate socioeconomic regionalization: a pilot study in central Canada. In: Ostry, S. & Rymes, T. (eds), Papers on regional statistical studies, pp. 75–130. Univ. of Toronto Press, Toronto.Google Scholar
  95. Rayner, J.N. 1971. An introduction to spectral analysis. Pion Ltd., London.Google Scholar
  96. Renshaw, E. & Ford, E.D. 1983. The interpretation of process from pattern using two-dimensional spectral analysis: methods and problems of interpretation. Appl. Statist. 32: 51–63.Google Scholar
  97. Renshaw, E. & Ford, E.D. 1984. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56: 75–85.Google Scholar
  98. Ripley, B.D. 1981. Spatial statistics. John Wiley & Sons, New York.Google Scholar
  99. Ripley, B.D. 1987. Spatial point pattern analysis in ecology. In: Legendre, P. & Legendre, L. (eds), Developments in numerical ecology. NATO ASI Series, Vol. G 14, pp. 407–429, Springer-Verlag, Berlin.Google Scholar
  100. Sakai, A.K. & Oden, N.L. 1983. Spatial pattern of sex expression in silver maple (Acer saccharinum L.): Morisita's index and spatial autocorrelation. Am. Nat. 122 489–508.Google Scholar
  101. Scherrer, B. 1982. Techniques de sondage en écologie. In: Frontier, S. (ed.), Stratégies d'échantillonnage en écologie, pp. 63–162. Collection d'Écologie, 17. Masson, Paris et les Presses de l'Université Laval, Québec.Google Scholar
  102. Silverman, B.W. 1986. Density estimation for statistics and data analysis. Chapman and Hall, London.Google Scholar
  103. Smouse, P.E., Long, J.C. & Sokal, R.R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35: 627–632.Google Scholar
  104. Sneath, P.H.A. 1966. A comparison of different clustering methods as applied to randomly-spaced points. Classification Soc. Bull. 1: 2–18.Google Scholar
  105. Sokal, R.R. 1979. Ecological parameters inferred from spatial correlograms. In: Patil, G.P. & Rosenzweig, M.L., (eds), Contemporary quantitative ecology and related ecometrics. Statistical Ecology Series, Vol. 12, pp. 167–196. International Co-operative Publ. House, Fairland, Maryland.Google Scholar
  106. Sokal, R.R. 1983. Analyzing character variation in geographic space. In: Felsenstein, J. (ed.), Numerical taxonomy. NATO ASI Series, Vol. G1, pp. 384–403. Springer-Verlag, Berlin.Google Scholar
  107. Sokal, R.R. 1986. Spatial data analysis and historical processes. In: Diday, E. et al. (eds), Data analysis and informatics, IV. Proc. Fourth Int. Symp. Data Anal. Informatics, Versailles, France, 1985, pp. 29–43. North-Holland, Amsterdam.Google Scholar
  108. Sokal, R.R. & Oden, N.L. 1978. Spatial autocorrelation in biology. 1. Methodology, Biol. J. Linnean Soc. 10: 199–228.Google Scholar
  109. Sokal, R.R. & Thomson, J.D. 1987. Applications of spatial autocorrelation in ecology. In: Legendre, P. & Legendre, L. (eds), Developments in numerical ecology. NATO ASI Series, Vol. G 14, pp. 431–466. Springer-Verlag, Berlin.Google Scholar
  110. Tapia, R.A. & Thompson, J.A. 1978. Nonparametric probability density estimation. Johns Hopkins Univ. Press, Baltimore.Google Scholar
  111. terBraak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  112. terBraak, C.J.F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.Google Scholar
  113. Upton, G.J.G. & Fingleton, B. 1985. Spatial data analysis by example. Vol. 1: Point pattern and quantitative data. John Wiley & Sons, Chichester.Google Scholar
  114. Wartenberg, D. 1985a. Canonical trend surface analysis: a method for describing geographic patterns. Syst. Zool. 34: 259–279.Google Scholar
  115. Wartenberg, D. 1985b. Multivariate spatial correlation: a method for exploratory geographical analysis. Geogr. Anal. 17: 263–283.Google Scholar
  116. Watson, D.F. 1981. Computing the n-dimensional Delaunay tesselation with application to Voronoi polygones. Computer J. 24: 167–172.Google Scholar
  117. Webster, R. 1973. Automatic soil-boundary location from transect data. J. Int. Assoc. Math. Geol. 5: 27–37.Google Scholar
  118. Webster, R. & Burrough, P.A. 1972. Computer-based soil mapping of small areas from sample data. I. Multivariate classification and ordination. II. Classification smoothing. J. Soil Sci. 23: 210–221, 222–234.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Pierre Legendre
    • 1
  • Marie Josée Fortin
    • 2
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.Department of Ecology and EvolutionState University of New YorkStony BrookUSA

Personalised recommendations