Hydrobiologia

, Volume 326, Issue 1, pp 327–333 | Cite as

The use of seaweeds as bioindicators of natural and anthropogenic contaminants in northern Chile

  • Julio A. Vasquez
  • Nelson Guerra
7. Pollution

Abstract

Twelve seaweed species were sampled from 1991 to 1993 in order to detect the impact of natural mineralization and mining in 14 contaminated and non-contaminated areas (between 24° and 30° S — more than 1200 km) along the northern Chilean coast. Instrumental neutron activation analysis (INAA) was used to measure the concentration of 17 chemical elements. The results showed high variability in and between species, among sampling sites and times of collection. The high values of heavy metals in seaweeds suggest that these marine organisms can be used as biological indicators for detecting mineralization and anthropogenic impact on coastal marine communities.

Key words

algae bioindicators Chile coastal environment mining pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowmer, K. H., 1986. Rapid biological assay and limitation in macrophyte ecotoxicology: a review. Aust. J. freshwat. Res. 37: 297–308.Google Scholar
  2. Castagna, A., F. Sinatra, G. Castagna, A. Stoli & S. Zafarana, 1985. Trace elements evaluation in marine organisms. Mar. Pollut. Bull 16: 416–419.Google Scholar
  3. Castilla, J. C. & E. Nealler, 1978. Marine environmental impact due to mining activities of El Salvador Copper Mine, Chile. Mar. Pollut. Bull. 14: 459–464.Google Scholar
  4. Capuzzo, J. M., 1988. Physiological effects of a pollutant gradient: Introduction. Mar. Ecol. Prog. Ser. 64: 111.Google Scholar
  5. Costantini, S., R. Giordano, L. Ciaralli & E. Beccaloni, 1991. Mercury, cadmium and lead evaluation in Posidonia oceanica and Codium tomentosum. Mar. Pollut. Bull. 22: 362–363.Google Scholar
  6. Dauer, D. M., 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Pollut. Bull. 26: 249–257.Google Scholar
  7. Förstner, U. & G. T. W. Wittmann, 1983. Metal Pollution in the Aquatic Environment. Spring-Verlag. Berlin, 486 pp.Google Scholar
  8. Gray, J. S., 1992. Biological and ecological effects of marine pollutants and their detection. Mar. Pollut. Bull. 25: 48–50.Google Scholar
  9. Grime, J. P., 1979. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 1169–1194.Google Scholar
  10. Guilizzoni, P., 1991. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquat. Bot. 41: 87–109.Google Scholar
  11. Ho, Y B., 1990. Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong. Hydrobiologia 203: 73–81.Google Scholar
  12. Hornung, H., D. Rabib & B. Krumgalz, 1981. The occurrence of mercury in marine algae and some gastropod molluscs of the Mediterranean shoreline of Israel. Mar. Pollut. Bull 12: 387–390.Google Scholar
  13. Kureishy, T. W., 1991. Heavy metals in algae around the coast of Qatar. Mar. Pollut. Bull. 22: 414–416.Google Scholar
  14. Lawrence, J. M., 1995. The use of life-history strategies in evaluating marine invertebrates for biotesting. Biologia Morya (Vladivostok).Google Scholar
  15. Levine, H. G., 1984. The use of seaweeds for monitoring coastal waters. In L.E. Schubert (ed.), Algae as Ecological Indicators. Academic Press Inc. London: 189–209.Google Scholar
  16. Maeda, S. & T. Sakaguchi, 1990. Accumulation and detoxification of toxic metal elements by algae. In I. Akatsuka (ed.), Introduction to Applied Phycology. SPB Academic Publishing by The Hague, The Netherlands: 109–136.Google Scholar
  17. National Research Council, 1986. Ecological Knowledge and Environmental Problem-solving. Concepts and case of studies. National Academy Press, Washington, D.C.Google Scholar
  18. Oyarzún, J., S. Collao & C. Ferraz, 1991. Distribución regional de Cd, Bi, Co, Ni y Mo en menas cupríferas chilenas entre los 22° y 33° S. Actas 6 Congreso Geológico Chileno 1: 714–718.Google Scholar
  19. Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments: a review. Environ. Pollut. 13: 281–317.Google Scholar
  20. Proser, F., 1983. Heavy metals in aquatic organisms. In U. Förstner & G.T.W. Wittmann (eds), Metal Pollution in the Aquatic Environment. Spring-Verlag, Berlin Heidelberg: 271–318.Google Scholar
  21. Reisch, D. J., 1988. The use of toxicity testing in marine environmental resarch. In D. F. Soule, G. S. Kleppel (eds) Marine Organisms as Indicators. Spring-Verlag New York: 231–245.Google Scholar
  22. Sillitoe, R. H., 1976. Andean mineralization: a model for the metallogeny of convergent plate margins. In D. F. Strong (ed.), Metallogeny and Plate Tectonics, Geol. Assoc. Can. Spec. Paper 14: 59–100.Google Scholar
  23. Vermeer, K. & J. C. Castilla, 1991. High Cadmium residues observed during a pilot study in shorebird and their prey downstream from the El Salvador Copper Mine, Chile. Envir. Cont. Tox. 46: 242–248.Google Scholar
  24. Vila, T. & R. H. Sillitoe, 1991. Gold-rich porphyry systems in the Maricunga belt, northern Chile. Econ. Geol. 86: 1238–1260.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Julio A. Vasquez
  • Nelson Guerra
    • 1
  1. 1.Facultad de Ingeniería y Ciencias GeológicasUniversidad Católica del NorteChile

Personalised recommendations