Advertisement

Hydrobiologia

, Volume 326, Issue 1, pp 205–211 | Cite as

Micropopulation differentiation in phenol content and susceptibility to herbivory in the Chilean kelp Lessonia nigrescenss (Phaeophyta, Laminariales)

  • Enrique A. Martínez
5. Population studies

Abstract

Micropopulation differences in phenol content between intertidal and subtidal individuals of the kelp Lessonia nigrescens were found. Subtidal plants showed: (1) significantly higher phenol content than intertidal individuals, in vegetative and reproductive tissues, (2) intra-plant differences, with higher content in apical frond tissues, (3) higher resistance to consumption by herbivorous fishes. The microscopic progeny of subtidal plants showed the same trend as adult plants: (1) haploid spores from subtidal plants had higher phenol content than spores from intertidal individuals, and (2) the microscopic sporophytes derived from subtidal spores and gametophytes were less consumed by herbivorous snails (Tegula tridentata) than those derived from intertidal plant propagules. No increase in phenol content was detected after mechanical injury to experimental fronds, or after transplantation to the subtidal environment.

In addition to the absence of inducible responses, the different phenol content between intertidal and subtidal individuals, in adult diploid plants and also in the haploid progeny, suggests that both environments differ someway enough to fix the mentioned features on the plants of Lessonia nigrescens. It is likely that the differences in herbivory between the two distributional extremes contributed to the observed pattern.

Key words

herbivory intra-population variability kelp Lessonia phenols seaweed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. K. & W. J. North, 1966. In situ studies of spore production and dispersal in the giant kelp, Macrocystis. Proc. Int. Seaweed Symp. 5: 73–86.Google Scholar
  2. Cáceres, C. W., L. S. Fuentes & F. P. Ojeda, 1994. Optimal feeding strategies of the temperate herbivorous fish Aplodactylus punctatus: the effect of food availability on digestive and reproductive patterns. Oecologia 99: 118–123.Google Scholar
  3. Camus, P. A. & E. A. Martínez, 1994. The exploitation of brown algae in Chile. Appl. Phycol. Forum 11: 4–5.Google Scholar
  4. Denton, A. B. & A. R. O. Chapman, 1991. Feeding preferences of gammarids amphipods among four species of Fucus. Mar. Biol. 109: 503–506.Google Scholar
  5. Estes, J. A. & P. D. Steinberg, 1988. Predation, herbivory and kelp evolution. Paleobiology 14: 19–36.Google Scholar
  6. Hay, M. E. & W. Fenical, 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Ann. Rev. Ecol. Syst. 19: 111–145.Google Scholar
  7. Himmelman, J. H. & H. Nédélec, 1990. Urchin foraging and algal survival strategies in intensely grazed communities in eastern canada. Can. J. Fish. aquatic Sci. 47: 1011–1026.Google Scholar
  8. Johnson, C. R. & K. H. Mann, 1986. The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincia (Montagu) at high population densities. J. exp. mar. Biol. Ecol. 97: 231–267.Google Scholar
  9. Kendrick, G. A. & D. Walker, 1991. Dispersal distances for propagules of Sargassum spinuligerum (Sargassaceae, Phaeophyta) measured directly by vital staining and venturi suction sampling. Mar. Ecol. Progr. Ser. 79: 133–138.Google Scholar
  10. Newbegin, E., M. A. Anderson & A. E. Clarke, 1993. Gametophytic self incompatibility systems. Plant Cell 5: 1315–1324.Google Scholar
  11. Ragan, M. A., 1976. Physodes and the phenolic compounds of brown algae. Composition and significance of physodes in vivo. Bot. mar. 19: 145–154.Google Scholar
  12. Ragan, M. A., 1984. The high molecular weight polyphloroglucinols of the marine brown alga Fucus vesiculosus L.: degradative analysis. Can. J. Chem. 63: 294–303.Google Scholar
  13. Ragan, M. A., 1985. Brown algal polyphenols: synthesis of ‘fucoflorethol A’ octamethyl ether (2,2′,4,6,6′-pentamethoxy-4′-(2,4,6trimethoxyphenoxy)biphenyl). Can. J. Chem. 63: 291–293.Google Scholar
  14. Ragan, M. A. & A. Jensen, 1977. Quantitative studies on brown algal phenols. I. Estimation of absolute polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. exp. mar. Biol. Ecol. 30: 209–221.Google Scholar
  15. Ragan, M. A. & A. Jensen, 1978. Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J. exp. mar. Biol. Ecol. 34: 245–258.Google Scholar
  16. Ragan, M. A. & A. Jensen, 1979. Quantitative studies on brown algal phenols. III. Light-mediated exudation of polyphenols from Ascophyllum nodosum (I.) Le Jol. J. exp. mar. Biol. Ecol. 36: 91–101.Google Scholar
  17. Ragan, M. A. & W. D. Jamieson, 1982. Oligomeric polyphloroglucinols from Fucus vesiculosus: photoplate mass spectrometric investigation. Phytochem. 21: 2709–2711.Google Scholar
  18. Ragan, M. A., C. M. Ragan & A. Jensen, 1980. Natural chelators in sea water: detoxification of Zn2+ by brown algal polyphenols. J. exp. mar. Biol. Ecol. 44: 261–267.Google Scholar
  19. Ramírez, M. E. & B. Santelices, 1991. Catálogo de las algas marinas de la costa temperada del Pacífico de Sudamérica. Publicaciones Periódicas, Pontificia Universidad Católica de Chile, Vicerrectoría Académica. Monografías Biológicas 5: 1–437.Google Scholar
  20. Reed, D. C., D. R. Laur & A. W. Ebeling, 1988. Variation in algal dispersal and recruitment: the importance of episodic events. Ecol. Monogr. 58: 321–335.Google Scholar
  21. Reed, D. C., M. Neushul & A. W. Ebeling, 1991. Role of settlement density on gametophytic growth and reproduction in the kelps Pterygophora californica and Macrocystis pyrifera (Phaeophyceae). J. Phycol. 27: 361–366.Google Scholar
  22. Santelices, B. & F. P. Ojeda, 1984. Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar. Ecol. Progr. Ser. 19: 73–82.Google Scholar
  23. Sieburth, J. M. & J. T. Conover, 1965. Sargassum tannin and antibiotic which retards fouling. Nature 208: 52–53.Google Scholar
  24. Sideman, E. J. & A. C. Mathieson, 1983. Ecological and genecological distinctions of a high intertidal dwarf form of Fucus distichus (L.) Powell in New England. J. exp. mar. Biol. Ecol. 72: 171–188.Google Scholar
  25. Statgraphics, 1988. Statistical Graphics System. Statistical Graphics Corporation. STSC, Inc.Google Scholar
  26. Steinberg, P. D., 1985. Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol. Monogr. 55: 333–349.Google Scholar
  27. Steinberg, P. D. 1988. Effects of quantitative and qualitative variation in phenolic compounds on feeding of three species of marine invertebrates herbivores. J. exp. mar. Biol. Ecol. 120: 221–237.Google Scholar
  28. Steinberg, P. D. & I. van Altena, 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol. Monogr. 62: 189–222.Google Scholar
  29. Targett, N. M., L. D. Coen, A. A. Boettcher & C. E. Tanner, 1992. Biogeographic comparisons of brown algal polyphenolics: evidence against a latitudinal trend. Oecologia 89: 464–470.Google Scholar
  30. Vadas, R. L. 1977. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 337–371.Google Scholar
  31. van Alstyne, K. L., 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecol. 69: 655–663.Google Scholar
  32. van Alstyne, K. L., 1989. Adventitious branching as a herbivore-induced defense in the intertidal brown alga Fucus distichus. Mar. Ecol. Progr. Ser. 56: 169–176.Google Scholar
  33. van Alstyne, K. L. & V. J. Paul, 1990. The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84: 158–163.Google Scholar
  34. Winter, F. C. & J. A. Estes, 1992. Experimental evidence for the effects of phenolic compounds from Dictyoneurum califbrnicum Ruprecht (Phaeophyta, Laaminariales) on feeding rate and growth in the abalone Haliotis rufescens Swaison. J. exp. mar. Biol. Ecol. 155: 263–277.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Enrique A. Martínez
    • 1
  1. 1.Departamento de Ecología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations